Background Healthcare personnel (HCP) are at increased risk of infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). We posit current infection control guidelines generally protect HCP from SARS-CoV-2 infection in a healthcare setting. Methods In this retrospective case series, we use viral genomics to investigate the likely source of SARS-CoV-2 infection in HCP at a major academic medical institution in the Upper Midwest of the United States between 25 March - 27 December, 2020. We obtain limited epidemiological data through informal interviews and review of the electronic health record. We combine epidemiological information with healthcare-associated viral sequences and with viral sequences collected in the broader community to infer the most likely source of infection in HCP. Results We investigated SARS-CoV-2 infection clusters involving 95 HCP and 137 possible patient contact sequences. The majority of HCP infections could not be linked to a patient or co-worker (55/95; 57.9%) and were genetically similar to viruses circulating concurrently in the community. We found 10.5% of infections could be traced to a coworker (10/95). Strikingly, only 4.2% of HCP infections could be traced to a patient source (4/95). Conclusions Infections among HCP add further strain to the healthcare system and put patients, HCP, and communities at risk. We found no evidence for healthcare-associated transmission in the majority of HCP infections evaluated here. Though we cannot rule out the possibility of cryptic healthcare-associated transmission, it appears that HCP most commonly becomes infected with SARS-CoV-2 via community exposure. This emphasizes the ongoing importance of mask-wearing, physical distancing, robust testing programs, and rapid distribution of vaccines.
SummaryBackgroundHealthcare personnel (HCP) are at increased risk of infection with the severe acute respiratory coronavirus 2019 virus (SARS-CoV-2). Between 12 March 2020 and 10 January 2021, >1,170 HCP tested positive for SARS-CoV-2 at a major academic medical institution in the Upper Midwest of the United States. We aimed to understand the sources of infections in HCP and to evaluate the efficacy of infection control procedures used at this institution to protect HCP from healthcare-associated transmission.MethodsIn this retrospective case series, we used viral genomics to investigate the likely source of SARS-CoV-2 infection in 96 HCP where epidemiological data alone could not be used to rule out healthcare-associated transmission. We obtained limited epidemiological data through informal interviews and review of the electronic health record. We combined viral sequence data and available epidemiological information to infer the most likely source of HCP infection.FindingsWe investigated 32 SARS-CoV-2 infection clusters involving 96 HCP, 140 possible patient contacts, and 1 household contact (total n = 237). Of these, 182 sequences met quality standards and were used for downstream analysis. We found the majority of HCP infections could not be linked to a patient or co-worker and therefore likely occurred in the outside community (58/96; 60.4%). We found a smaller percentage could be traced to a coworker (10/96; 10.4%) or were part of a patient-employee cluster (12/96; 12.5%). Strikingly, the smallest proportion of HCP infections could be clearly traced to a patient source (4/96; 4.2%).InterpretationInfection control procedures, consistently followed, offer significant protection to HCP caring for COVID-19 patients in a representative American academic medical institution. Rapid SARS-CoV-2 genome sequencing in healthcare settings can be used retrospectively to reconstruct the likely source of HCP infection when epidemiological data are not available or are inconclusive. Understanding the source of SARS-CoV-2 infection can then be used prospectively to adjust and improve infection control practices and guidelines.FundingThis project was funded in part through a COVID-19 Response grant from the Wisconsin Partnership Program at the University of Wisconsin School of Medicine and Public Health to T.C.F. and D.H.O. Author N.S. is supported by the National Institute of Allergy and Infectious Diseases Institute (NIAID) Grant 1DP2AI144244-01.Research in contextEvidence before this studyOn 16 January 2021 we searched for “SARS-CoV-2” AND “healthcare workers” AND “viral sequencing” in Google Scholar. This search returned 57 results, and included a number of preprint articles. We found two studies that used viral sequencing to investigate healthcare-associated outbreaks in the Netherlands 1 and the United Kingdom 2. To our knowledge, no study has used viral sequencing to specifically investigate the source of SARS-CoV-2 infections in healthcare workers in the United States. Although we and others have written about the potential utility of sequencing as an infection control asset 3–6, few have demonstrated the practical application of such efforts.Added value of this studyOur study suggests infection control measures in place at the institution evaluated in this case series are largely protecting healthcare personnel (HCP) from healthcare-associated SARS-CoV-2 infections. Even so, the majority of healthcare-associated infections we did identify appeared to be linked to HCP-to-HCP spread so additional messaging and guidelines to reduce HCP-to-HCP spread in and out of the workplace may be warranted. In addition, we demonstrated how rapid viral sequencing can be combined with, even limited, epidemiological information to reconstruct healthcare-associated SARS-CoV-2 outbreaks.Implications of all the available evidenceHealthcare-associated SARS-CoV-2 infections negatively affect HCP, patients, and communities. Infections among HCP add further strain to the healthcare system and put patients and other HCP at risk. We found the majority of HCP infections appeared to be acquired through community exposure so measures to reduce community spread are critical. This further emphasizes the importance of mask-wearing, physical distancing, robust testing programs, and the rapid distribution of vaccines.
Diagnosis by rapid antigen tests (RATs) is useful for early initiation of antiviral treatment.Because RATs are easy to use, they can be adapted for self-testing. Several kinds of RATs approved for such use by the Japanese regulatory authority are available from drug stores and websites. Most RATs for COVID-19 are based on antibody detection of the SARS-CoV-2 N protein. Since Omicron and its subvariants have accumulated several amino acid substitutions in the N protein, such amino acid changes might affect the sensitivity of RATs. Here, we investigated the sensitivity of seven RATs available in Japan, six of which are approved for public use and one of which is approved for clinical use, for the detection of BA.5, BA.2.75, BF.7, XBB.1, and BQ.1.1, as well as the delta variant (B.1.627.2). All tested RATs detected the delta variant with a detection level between 7500 and 75 000 pfu per test, and all tested RATs showed similar sensitivity to
Importance: The origin of highly divergent "cryptic" SARS-CoV-2 Spike sequences, which appear in wastewater but not clinical samples, is unknown. These wastewater sequences have harbored many of the same variants that later emerged in Omicron. If these enigmatic sequences are human-derived and transmissible, they could both be a source of future variants and a valuable tool for forecasting sequences that should be incorporated into vaccines and therapeutics. Objective: To determine whether enigmatic SARS-CoV-2 lineages detected in wastewater have a human or non-human (i.e., animal) source. Design: On January 11, 2022, an unusual Spike sequence was detected in municipal wastewater from a metropolitan area. Over the next four months, more focused wastewater sampling resolved the source of this variant. Setting: This study was performed in Wisconsin, United States, which has a comprehensive program for detecting SARS-CoV-2 in wastewater. Participants: Composite wastewater samples were used for this study; therefore, no individuals participated. Main Outcome(s) and Measure(s): The primary outcome was to determine the host(s) responsible for shedding this variant in wastewater. Both human and non-human hosts were plausible candidates at the study's outset. Results: The presence of the cryptic virus was narrowed from a municipal wastewater sample (catchment area >100,000 people) to an indoor wastewater sample from a single facility (catchment area ~30 people), indicating the human origin of this virus. Extraordinarily high concentrations of viral RNA (~520,000,000 genome copies / L and ~1,600,000,000 genome copies / L in June and August 2022, respectively) were detected in the indoor wastewater sample. The virus sequence harbored a combination of fixed nucleotide substitutions previously observed only in Pango lineage B.1.234, a variant that circulated at low levels in Wisconsin from October 2020 to February 2021. Conclusions and Relevance: High levels of persistent SARS-CoV-2 shedding from the gastrointestinal tract of an infected individual likely explain the presence of evolutionarily advanced, "cryptic variants" observed in some wastewater samples.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.