The largest animals are marine filter feeders, but the underlying mechanism of their large size remains unexplained. We measured feeding performance and prey quality to demonstrate how whale gigantism is driven by the interplay of prey abundance and harvesting mechanisms that increase prey capture rates and energy intake. The foraging efficiency of toothed whales that feed on single prey is constrained by the abundance of large prey, whereas filter-feeding baleen whales seasonally exploit vast swarms of small prey at high efficiencies. Given temporally and spatially aggregated prey, filter feeding provides an evolutionary pathway to extremes in body size that are not available to lineages that must feed on one prey at a time. Maximum size in filter feeders is likely constrained by prey availability across space and time.
SignificanceWe present a major advancement in our ability to bring the physiological laboratory to the open ocean through the noninvasive use of a suction cup-attached tag equipped with surface electrodes. Our study provides heart rate data of a large, free-diving whale (blue whale) without prior capture or restraint. We recorded a wide range of heart rates from the tag, reaching only several beats per minute during deep foraging dives (bradycardia) and nearly 40 beats per minute at the sea surface (tachycardia) as the whale recovered from its oxygen debt. The latter likely represents maximal heart rate given the measured duration of the heart beat itself, thereby demonstrating the greatest dynamic range in cardiac activity at this scale.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.