ABSTRACT. This revision of the classification of unicellular eukaryotes updates that of Levine et al. (1980) for the protozoa and expands it to include other protists. Whereas the previous revision was primarily to incorporate the results of ultrastructural studies, this revision incorporates results from both ultrastructural research since 1980 and molecular phylogenetic studies. We propose a scheme that is based on nameless ranked systematics. The vocabulary of the taxonomy is updated, particularly to clarify the naming of groups that have been repositioned. We recognize six clusters of eukaryotes that may represent the basic groupings similar to traditional ''kingdoms.'' The multicellular lineages emerged from within monophyletic protist lineages: animals and fungi from Opisthokonta, plants from Archaeplastida, and brown algae from Stramenopiles.
An unusual dinoflagellate has been discovered in association with an endemic population of stickleback, Gasterosteus (L.), from the Queen Charlotte Islands, Canada. The dinoflagellate spends most of its life cycle as a coccoid vegetative cyst, not as a parasitic trophont. The vegetative cyst is unique in containing a rigid fenestrated matrix, which is penetrated by cytoplasmic process that emanate from a central area containing the dinokaryotic nucleus and associated chloroplasts. Some pores in the matrix are filled by oil droplets or starch granules. Intracellular bacteria are found throughout the cyst, sometimes in association with the nucleus. The cytoplasm contains accumulation bodes, microbodies, polyhedral crystals, chloroplasts and polyvesicular bodes. The encysted dinoflagellate has several potential strategies. It can 1) shed its wall and become amoeboid; 2) undergo sporogenesis and give rise to both regular and resistant spores; 3) divide mitotically, with a gradual reduction in the size of daughter cells down to 20 μm; and 4) apparently form a resting cyst, during which it secretes a thick outer wall composed of five layers. Taxonomically, this unusual dinoflagellate appears to be a new member of the Blastodiniales, although its position will become clearer when details of the motile stage are known.
The unicellular marine dinoflagellate, Prorocentrum lima, an established producer of okadaic acid (OA), was shown to contain a type-1 protein phosphatase (PP-1) the biochemical profile of which on Mono-Q and Superdex-75 fast protein liquid chromatography was identical to the catalytic subunit of PP-1 from rabbit skeletal muscle. Purified P lima PP-1 (apparent molecular mass 37.5 kDa) was highly sensitive to inhibition by mammalian protein phosphatase inhibitor-1 and inhibitor-2, and to OA itself. A 6-7-fold increase in OA production by P lima, when grown under controlled conditions, correlated with an up to 300-fold increase in P lima PP-1 activity. Furthermore, P lima did not contain any detectable type-2A protein phosphatase activity. This study represents the first identification of a serine/threonine protein phosphatase in a dinoflagellate.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.