Partial graphitization of carbon nanofibers by high-temperature heat treatment can give improved composite properties. The intrinsic electrical conductivity of the bulk carbon nanofibers measured under compression is maximized by giving the fibers an initial heat treatment at 1500 °C. Similarly, for carbon nanofiber/polypropylene composites containing up to 12 vol% fiber, initial fiber heat treatments near 1500 °C give tensile modulus and strength superior even to composites made from fibers graphitized at 2900 °C. However, optimum composite conductivity is obtained with a somewhat lower heat-treatment temperature, near 1300 °C. Transmission electron microscopy (TEM) along with x-ray diffraction (XRD) explains these results, showing that heat treating the fibers alters the exterior planes from continuous, coaxial, and poorly crystallized to discontinuous nested conical crystallites inclined at about 25° to the fiber axis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.