Our study shows that an energy-sensing AMPK-FOXO pathway mediates the lifespan extension induced by a novel method of dietary restriction in C. elegans.
The maintenance of homeostasis throughout an organism's life span requires constant adaptation to changes in energy levels. The AMP-activated protein kinase (AMPK) plays a critical role in the cellular responses to low energy levels by switching off energy-consuming pathways and switching on energy-producing pathways. However, the transcriptional mechanisms by which AMPK acts to adjust cellular energy levels are not entirely characterized. Here, we find that AMPK directly regulates mammalian FOXO3, a member of the FOXO family of Forkhead transcription factors known to promote resistance to oxidative stress, tumor suppression, and longevity. We show that AMPK phosphorylates human FOXO3 at six previously unidentified regulatory sites. Phosphorylation by AMPK leads to the activation of FOXO3 transcriptional activity without affecting FOXO3 subcellular localization. Using a genome-wide microarray analysis, we identify a set of target genes that are regulated by FOXO3 when phosphorylated at these six regulatory sites in mammalian cells. The regulation of FOXO3 by AMPK may play a crucial role in fine tuning gene expression programs that control energy balance and stress resistance in cells throughout life.The maintenance of cellular energy levels in response to changes in nutrient availability, exercise, or stress stimuli is pivotal for organismal homeostasis throughout life. Disruption of this balance is associated with a number of pathologies, including diabetes and cancer. The AMP-activated protein kinase (AMPK) 3 plays a crucial role in translating changes in energy levels into adaptive cellular responses (1, 2). AMPK is a heterotrimeric protein kinase composed of three subunits: a catalytic subunit (␣), a scaffolding subunit (), and an AMP-sensing subunit (␥). AMPK is activated by stimuli that increase the AMP/ ATP ratio in cells. Excess AMP activates AMPK by inhibiting the dephosphorylation of the ␣ catalytic subunit (3) and by inducing a change in conformation in the AMPK heterotrimeric complex that promotes the phosphorylation and activation of the ␣ catalytic subunit by the AMPK-activating protein kinases, LKB1 and calmodulin-dependent protein kinase kinase (4 -8).AMPK controls cell metabolism and growth in response to low energy levels by phosphorylating a variety of substrates in cells, including acetyl-CoA carboxylase (ACC), tuberous sclerosis complex 2, and p27 KIP1 (9 -11). AMPK also regulates gene expression by phosphorylating co-activators, such as transducer of regulated CREB, thyroid hormone receptor interactor 6, and the transcription factor p53 (12-16). The LKB1-AMPK pathway plays a pivotal role in tumor suppression (17, 18), in diabetes prevention (19), and in longevity (20). Thus, identifying novel AMPK substrates is important to understand how the LKB1-AMPK pathway mediates its effects in the organism.FOXO transcription factors are good candidates to be regulated by AMPK. The FOXO family of Forkhead transcription factors (FOXO1, FOXO3, FOXO4, and FOXO6 in mammals) plays an important role in the...
The plasticity of aging suggests that longevity may be controlled epigenetically by specific alterations in chromatin state. The link between chromatin and aging has mostly focused on histone deacetylation by the Sir2 family1,2, but less is known about the role of other histone modifications in longevity. Histone methylation plays a crucial role during development and in maintaining stem cell pluripotency in mammals3. Regulators of histone methylation have been associated with aging in worms4,5,6,7 and flies8, but characterization of their role and mechanism of action has been limited. Here we identify the ASH-2 trithorax complex9, which trimethylates histone H3 at lysine 4 (H3K4), as a regulator of lifespan in C. elegans in a directed RNAi screen in fertile worms. Deficiencies in members of the ASH-2 complex–ASH-2 itself, WDR-5, and the H3K4 methyltransferase SET-2 extend worm lifespan. Conversely, the H3K4 demethylase RBR-2 is required for normal lifespan, consistent with the idea that an excess of H3K4 trimethylation–a mark associated with active chromatin–is detrimental for longevity. Lifespan extension induced by ASH-2 complex deficiency requires the presence of an intact adult germline and the continuous production of mature eggs. ASH-2 and RBR-2 act in the germline, at least in part, to regulate lifespan and to control a set of genes involved in lifespan determination. These results suggest that the longevity of the soma is regulated by an H3K4 methyltransferase/demethylase complex acting in the C. elegans germline.
SUMMARY The energy-sensing AMP-activated protein kinase (AMPK) is activated by low nutrient levels. Functions of AMPK, other than its role in cellular metabolism, are just beginning to emerge. Here we use a chemical genetics screen to identify direct substrates of AMPK in human cells. We find that AMPK phosphorylates 28 previously unidentified substrates, several of which are involved in mitosis and cytokinesis. We identify the residues phosphorylated by AMPK in vivo in several substrates, including protein phosphatase 1 regulatory subunit 12C (PPP1R12C) and p21 -activated protein kinase (PAK2). AMPK-induced phosphorylation is necessary for PPP1R12C interaction with 14-3-3 and phosphorylation of myosin regulatory light chain. Both AMPK activity and PPP1R12C phosphorylation are increased in mitotic cells and are important for mitosis completion. These findings suggest that AMPK coordinates nutrient status with mitosis completion, which may be critical for the organism’s response to low nutrients during development, or in adult stem and cancer cells.
Summary AMP-activated protein kinase (AMPK) is a central energy gauge that regulates metabolism and has been increasingly involved in non-metabolic processes and diseases. However, AMPK's direct substrates in non-metabolic contexts are largely unknown. To better understand the AMPK network, we use a chemical genetics screen coupled to a peptide capture approach in whole cells, resulting in identification of direct AMPK phosphorylation sites. Interestingly, the high-confidence AMPK substrates contain many proteins involved in cell motility, adhesion, and invasion. AMPK phosphorylation of the RHOA guanine nucleotide exchange factor NET1A inhibits extracellular matrix degradation, an early step in cell invasion. The identification of direct AMPK phosphorylation sites also facilitates large-scale prediction of AMPK substrates. We provide an AMPK motif matrix and a pipeline to predict additional AMPK substrates from quantitative phosphoproteomics datasets. As AMPK is emerging as a critical node in aging and pathological processes, our study identifies potential targets for therapeutic strategies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.