Marine life is controlled by multiple physical and chemical drivers and by diverse ecological processes. Many of these oceanic properties are being altered by climate change and other anthropogenic pressures. Hence, identifying the influences of multifaceted ocean change, from local to global scales, is a complex task. To guide policy-making and make projections of the future of the marine biosphere, it is essential to understand biological responses at physiological, evolutionary and ecological levels. Here, we contrast and compare different approaches to multiple driver experiments that aim to elucidate biological responses to a complex matrix of ocean
Sand mining (used here as a generic term that includes mining of any riverine aggregates regardless of particle size) is a global activity that is receiving increasing media attention due to perceived negative environmental and social impacts. As calls grow for stronger regulation of mining, there is a need to understand the scientific evidence to support effective management. This paper summarizes the results of a structured literature review addressing the question, “What evidence is there of impacts of sand mining on ecosystem structure, process, and biodiversity in rivers, floodplains, and estuaries?” The review found that most investigations have focused on temperate rivers where sand mining occurred historically but has now ceased. Channel incision was the most common physical impact identified; other physical responses, including habitat disturbance, alteration of riparian zones, and changes to downstream sediment transport, were highly variable and dependant on river characteristics. Ecosystem attributes affected included macroinvertebrate drift, fish movements, species abundance and community structures, and food web dynamics. Studies often inferred impacts on populations, but supporting data were scarce. Limited evidence suggests that rivers can sustain extraction if volumes are within the natural sediment load variability. Significantly, the countries and rivers for which there is science‐based evidence related to sand mining are not those where extensive sand mining is currently reported. The lack of scientific and systematic studies of sand mining in these countries prevents accurate quantification of mined volumes or the type, extent, and magnitude of any impacts. Additional research into how sand mining is affecting ecosystem services, impacting biodiversity and particularly threatened species, and how mining impacts interact with other activities or threats is urgently required.
Ocean deoxygenation is predicted to threaten marine ecosystems globally. However, current and future oxygen concentrations and the occurrence of hypoxic events on coral reefs remain underexplored. Here, using autonomous sensor data to explore oxygen variability and hypoxia exposure at 32 representative reef sites, we reveal that hypoxia is already pervasive on many reefs. 84% of reefs experienced weak to moderate (≤153 to ≤92 µmol O 2 kg -1 ) hypoxia and 13% experienced severe (≤61 µmol O 2 kg -1 ) hypoxia. Under different climate change scenarios based on 4 Shared Socioeconomic Pathways (SSPs), we show that projected ocean warming and deoxygenation will increase the duration, intensity, and severity of hypoxia, with more than 94% and 31% of reefs experiencing weak to moderate and severe hypoxia, respectively, by 2100 under SSP5-8.5. This projected oxygen loss could have negative consequences for coral reef taxa due to the key role of oxygen in organism functioning and fitness.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.