Phage Phi6 is an enveloped virus considered as a possible non-pathogenic surrogate for SARS-CoV-2 and other viral pathogens in transmission studies. Higher input amounts of bacteriophage Phi6 are shown to delay and protect the phage from environmental decay, both when the phage are dried in plastic tubes, and when they are stored in saline solution at 4°C. By contrast, when bacteriophage Phi6 are placed in LB (Luria-Bertani) growth medium (instead of saline) prior to placement on the plastic surface, the influence of starting concentration on viral recovery is negligible. The protection is reflected in longer half-lives of the phage at higher concentrations compared to lower. Because experiments supporting the possibility of fomite transmission of SARS-CoV-2 and other viruses rely upon survival of infectious virus following inoculation of various surfaces, high initial amounts of input virus on a surface may generate artificially inflated survival times compared to realistic lower levels of virus that a subject would normally encounter. This is not only because there are extra half-lives to go through at the higher concentrations, but also because the half-lives themselves are extended at the higher virus concentrations. It is important to design surface drying experiments for pathogens with realistic levels of input virus, and to consider the role of the carrier and matrix if the results are to be clinically relevant. IMPORTANCE During the COVID-19 pandemic, a lot of attention has been paid to the environmental decay of SARS-CoV-2 due to proposed transmission of the virus via fomites. However, published experiments have commenced with very high virus titer inoculums, an experimental design not representative of real-life conditions. The study described here evaluated the impact of initial virus titer on environmental decay of an enveloped virus, using a non-pathogenic surrogate for transmission of SARS-CoV-2, enveloped bacteriophage Phi6. We establish that higher concentrations of virus can protect the virus from environmental decay, depending on conditions. This has important implications for stability studies of SARS-CoV-2 and other viruses. Our results point to a limitation in the fundamental methodology that has been used to attribute fomite transmission for almost all respiratory viruses.
We have previously identified the pyrazolobenzothiazine scaffold as a promising chemotype against hepatitis C virus (HCV) NS5B polymerase, a validated and promising anti-HCV target. Herein we describe the design, synthesis, enzymatic, and cellular characterization of new pyrazolobenzothiazines as anti-HCV inhibitors. The binding site for a representative derivative was mapped to NS5B palm site I employing a mutant counterscreen assay, thus validating our previous in silico predictions. Derivative 2b proved to be the best selective anti-HCV derivative within the new series, exhibiting a IC50 of 7.9 μM against NS5B polymerase and antiviral effect (EC50 = 8.1 μM; EC90 = 23.3 μM) coupled with the absence of any antimetabolic effect (CC50 > 224 μM; SI > 28) in a cell based HCV replicon system assay. Significantly, microscopic analysis showed that, unlike the parent compounds, derivative 2b did not show any significant cell morphological alterations. Furthermore, since most of the pyrazolobenzothiazines tested altered cell morphology, this undesired aspect was further investigated by exploring possible perturbation of lipid metabolism during compound treatment.
To investigate divalent metal ion (Me 2+) requirements in electrophilic biocatalysis, we compared Mg 2+ , Mn 2+ , Co 2+ , Zn 2+ , Cu 2+ , Ni 2+ , Cd 2+ , Ca 2+ , and Fe 2+ activities with 13 enzymes executing nucleotidyl and/or phosphoryl transfer. We find that each Me 2+ ion was highly catalytically active with one or more of the related enzymes. This result suggests that features of Me 2+ coordination at the active center, and/or the enzyme-mediated presentation of the reactants to the chelated Me 2+ , rather than the nature of the Me 2+ , determine the ability of the Me 2+ to support catalysis. At physiological pH, all the tested Me 2+ ions, with the exception of Mg 2+ , produced insoluble complexes with inorganic phosphate (P i) and bicarbonate (HCO À 3). These data suggest that early in the development of life, bioavailability and biocompatibility with these abundant cellular metabolites may have been decisive factors in the choice of Mg 2+ as the major ion for biocatalysis. Taking into account the concentrations of inorganic ions in the ancient environment in which the first cells emerged, as inferred from the 'chemistry conservation principle', the choice of Mg 2+ was predetermined prior to the origin of life.
Formation of the ternary complex between GTP-bound form of elongation factor Tu (EF-Tu) and aminoacylated transfer RNA (aa-tRNA) is a key event in protein biosynthesis. Here we show that fluorescently modified Escherichia coli EF-Tu carrying three mutations, C137A, C255V and E348C, and fluorescently modified Phe-tRNA(Phe) form functionally active ternary complex that has properties similar to those of the naturally occurring (unmodified) complex. Similarities include the binding and binding rate constants, behavior in gel retardation assay, as well as activities in tRNA protection and in vitro translation assays. Proper labeling of EF-Tu was demonstrated in MALDI mass spectroscopy experiments. To generate the mutant EF-Tu, a series of genetic constructions were performed. Two native cysteine residues in the wild-type EF-Tu at positions 137 and 255 were replaced by Ala and Val, respectively, and an additional cysteine was introduced either in position 324 or 348. The assembly FRET assay showed a 5- to 7-fold increase of Cy5-labeled EF-Tu E348C mutant fluorescence upon formation of ternary complex with charged tRNA(Phe)(Cy3-labeled) when the complex was excited at 532 nm and monitored at 665 nm. In a control experiment, we did not observe FRET using uncharged tRNA(Phe)(Cy3), nor with wild-type EF-Tu preparation that was allowed to react with Cy5 maleimide, nor in the absence of GTP. The results obtained demonstrate that the EF-Tu:tRNA FRET system described can be used for investigations of ribosomal translation in many types of experiments.
We have shown earlier that microsomal cytochrome b5 can form a specific complex with mitochondrial cytochrome P450 (cytochrome P450scc). The formation of the complex between these two heme proteins was proved spectrophotometrically, by affinity chromatography on immobilized cytochrome b5, and by measuring the cholesterol side-chain cleavage activity of cytochrome P450scc in a reconstituted system in the presence of cytochrome b5. To further study the mechanism of interaction of these heme proteins and evaluate the role of negatively charged amino acid residues Glu42, Glu48, and Asp65 of cytochrome b5, which are located at the site responsible for interaction with electron transfer partners, we used site-directed mutagenesis to replace residues Glu42 and Glu48 with lysine and residue Asp65 with alanine. The resulting mutant forms of cytochrome b5 were expressed in E. coli, and full-length and truncated forms (shortened from the C-terminal sequence due to cleavage of 40 amino acid residues) of these cytochrome b5 mutants were purified. Addition of the truncated forms of cytochrome b5 (which do not contain the hydrophobic C-terminal sequence responsible for interaction with the membrane) to the reconstituted system containing cytochrome P450scc caused practically no stimulation of catalytic activity, indicating an important role of the hydrophobic fragment of cytochrome b5 in its interaction with cytochrome P450scc. However, full-length cytochrome b5 and the full-length Glu48Lys and Asp65Ala mutant forms of cytochrome b5 stimulated the cholesterol side-chain cleavage reaction catalyzed by cytochrome P450scc by 100%, suggesting that residues Glu48 and Asp65 of cytochrome b5 are not directly involved in its interaction with cytochrome P450scc. The replacement of Glu42 for lysine, however, made the Glu42Lys mutant form of cytochrome b5 about 40% less effective in stimulation of the cholesterol side-chain cleavage activity of cytochrome P450scc, indicating that residue Glu42 of cytochrome b5 is involved in electrostatic interactions with cytochrome P450scc. Residues Glu42 and Glu48 of cytochrome b5 appear to participate in electrostatic interaction with microsomal type cytochrome P450.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.