We study a stepwise algorithm for solving the indefinite truncated moment problem and obtain the factorization of the matrix describing the solution of this problem into elementary factors. We consider the generalized Jacobi matrix corresponding to Magnus' continuous P -fraction that appears in this algorithm and the polynomials of the first and second kind that are solutions of the corresponding difference equation. Weyl functions and the resolution matrices for finite and infinite Jacobi matrices are computed in terms of these polynomials. Convergence of diagonal and paradiagonal Padé approximation for functions from the generalized Nevanlinna class is studied.
In this note we recast the Geronimus transformation in the framework of polynomials orthogonal with respect to symmetric bilinear forms. We also show that the double Geronimus transformations lead to non-diagonal Sobolev type inner products.
Abstract. We introduce a new map from polynomials orthogonal on the unit circle to polynomials orthogonal on the real axis. This map is closely related with the theory of CMV matrices. It contains an arbitrary parameter λ which leads to a linear operator pencil. We show that the little and big -1 Jacobi polynomials are naturally obtained under this map from the Jacobi polynomials on the unit circle.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.