Ultrasonic additive manufacturing (UAM) is a solid-state additive manufacturing technique employing principles of ultrasonic welding coupled with mechanized tape layering to fabricate fully functional parts. However, parts fabricated using UAM often exhibit a reduction in strength levels when loaded normal to the welding interfaces (Z-direction). In this work, the effect of post-weld heat treatments (PWHT) on Al-6061 builds fabricated using the UAM process was explored aiming to improve the mechanical strength of the UAM builds. Tensile testing with digital image correlation (DIC) coupled with metallography along with multi-scale structure characterization (SEM-EBSD) was used to investigate and rationalize the mechanical performance of the UAM builds. It was established that PWHTs may improve the Z-strength level by the factor of ~33.5 (from ~46 MPa to 177 MPa). The improvements in the strength level were primarily aided by material aging and grain growth across the bond interface.
Ferritic-structured Fe-Cr-Al alloys are being developed and show promise as oxidation resistant accident tolerant light water reactor fuel cladding. This study focuses on investigating the weldability and post-weld mechanical behavior of three model alloys in a range of Fe-(13-17.5)Cr-(3-4.4)Al (wt.%) with a minor addition of yttrium using modern laser-welding techniques. A detailed study on the mechanical performance of bead-on-plate welds using subsized, flat dog-bone tensile specimens and digital image correlation (DIC) has been carried out to determine the performance of welds as a function of alloy composition. Results indicated a reduction in the yield strength within the fusion zone compared to the base metal. Yield strength reduction was found to be primarily constrained to the fusion zone due to grain coarsening with a less severe reduction in the heat affected zone. For all proposed alloys, laser welding resulted in a defect free weld devoid of cracking or inclusions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.