This paper details the synthesis and combustion characteristics of silicon-based nanoenergetic formulations. Silicon nanostructured powder (with a wide variety of morphologies such as nanoparticles, nanowires, and nanotubes) were produced by DC plasma arc discharge route. These nanostructures were passivated with oxygen and hydrogen post-synthesis. Their structural, morphological, and vibrational properties were investigated using X-ray diffractometry, transmission electron microscopy (TEM), nitrogen adsorption-desorption analysis, Fourier transform infrared (FTIR) spectrometry and Raman spectroscopy. The silicon nanostructured powder (fuel) was mixed with varying amounts of sodium perchlorate (NaClO 4 ) nanoparticles (oxidizer) to form nanoenergetic mixtures. The NaClO 4 nanoparticles with a size distribution in the range of 5-40 nm were prepared using surfactant in a mixed solvent system. The combustion characteristics, namely (i) the combustion wave speed and (ii) the pressure-time characteristics, were measured. The observed correlation between the basic material properties and the measured combustion characteristics is presented. These silicon-based nanoenergetic formulations exhibit reduced sensitivity to electrostatic discharge (ESD).
We construct a phase diagram for silicon layer growth on (001) Si by hot-wire chemical vapor deposition (HWCVD), for rates from 10 to 150 nm/min and for substrate temperatures from 500 to 800 °C. Our results show that a mixed mono and dihydride surface termination during growth causes polycrystalline growth; some H-free sites are needed for epitaxy. For epitaxial films (T>620 °C), the dislocation density decreases with increasing growth temperature because of reduced O contamination of the surface. The best HWCVD epitaxial layers have dislocation densities of 105 cm−2.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.