There is an urgent need for novel polymeric carriers that can selectively deliver a large dose of chemotherapeutic agents into hepatic cancer cells to achieve high therapeutic activity with minimal systemic side effects. PAMAM dendrimers are characterized by a unique branching architecture and a large number of chemical surface groups suitable for coupling of chemotherapeutic agents. In this article, we report the coupling of N-acetylgalactosamine (NAcGal) to generation 5 (G5) of poly(amidoamine) (PAMAM-NH2) dendrimers via peptide and thiourea linkages to prepare NAcGal-targeted carriers used for targeted delivery of chemotherapeutic agents into hepatic cancer cells. We describe the uptake of NAcGal-targeted and non-targeted G5 dendrimers into hepatic cancer cells (HepG2) as a function of G5 concentration and incubation time. We examine the contribution of the asialoglycoprotein receptor (ASGPR) to the internalization of NAcGal-targeted dendrimers into hepatic cancer cells through a competitive inhibition assay. Our results show that uptake of NAcGal-targeted G5 dendrimers into hepatic cancer cells occurs via ASGPR-mediated endocytosis. Internalization of these targeted carriers increased with the increase in G5 concentration and incubation time following Michaelis–Menten kinetics characteristic of receptor-mediated endocytosis. These results collectively indicate that G5-NAcGal conjugates function as targeted carriers for selective delivery of chemotherapeutic agents into hepatic cancer cells.
A formal synthesis of (+)-α-allokainic acid and a total synthesis of (−)-α-kainic acid were carried
out using a short, efficient, and highly stereoselective approach. From an alkyne precursor, a nickel-catalyzed
cyclization and a palladium-catalyzed rearrangement were utilized in the synthesis of (+)-α-allokainic acid.
From an allene precursor, a nickel-catalyzed cyclization was utilized in the synthesis of (−)-α-kainic acid.
The allene cyclization used in the latter sequence was the first example of a metal-catalyzed cyclization of this
type.
Poly(amidoamine) (PAMAM) dendrimers are branched water-soluble polymers defined by consecutive generation numbers (Gn) indicating a parallel increase in size, molecular weight, and number of surface groups available for conjugation of bioactive agents. In this article, we compare the biodistribution of N-acetylgalactosamine (NAcGal)-targeted [(14) C]1 -G5-(NH2 )5 -(Ac)108 -(NAcGal)14 particles to non-targeted [(14) C]1 -G5-(NH2 )127 and PEGylated [(14) C]1 -G5-(NH2 )44 -(Ac)73 -(PEG)10 particles in a mouse hepatic cancer model. Results show that both NAcGal-targeted and non-targeted particles are rapidly cleared from the systemic circulation with high distribution to the liver. However, NAcGal-targeted particles exhibited 2.5-fold higher accumulation in tumor tissue compared to non-targeted ones. In comparison, PEGylated particles showed a 16-fold increase in plasma residence time and a 5-fold reduction in liver accumulation. These results motivated us to engineer new PEGylated G5 particles with PEG chains anchored to the G5 surface via acid-labile cis-aconityl linkages where the free PEG tips are functionalized with NAcGal or SP94 peptide to investigate their potential as targeting ligands for hepatic cancer cells as a function of sugar conformation (α versus β), ligand concentration (100-4000 nM), and incubation time (2 and 24 hours) compared to fluorescently (Fl)-labeled and non-targeted G5-(Fl)6 -(NH2 )122 and G5-(Fl)6 -(Ac)107 -(cPEG)15 particles. Results show G5-(Fl)6 -(Ac)107 -(cPEG[NAcGalβ ])14 particles achieve faster uptake and higher intracellular concentrations in HepG2 cancer cells compared to other G5 particles while escaping the non-specific adsorption of serum protein and phagocytosis by Kupffer cells, which make these particles the ideal carrier for selective drug delivery into hepatic cancer cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.