A systematic study has been conducted to investigate the role of hydrogen in the etching reaction of graphene films grown on copper foils. The results at 825 °C and 500 mTorr showed no evidence of graphene etching by purified ultrahigh purity (UHP)-grade hydrogen, whereas graphene films exposed to unpurified UHP-grade hydrogen were considerably etched due to the presence of oxygen or other oxidizing impurities. This finding reveals not only the major impact of oxidizing impurities in the graphene etching reaction, but also entails understanding and controlling the graphene chemical vapor deposition mechanism on copper substrates.
The growth of high quality graphene layers by chemical vapor deposition (CVD) has been found to strongly depend on growth conditions with results varying greatly from one laboratory to another for nominally identical conditions. We report the results of a systematic investigation of the role of hydrogen and oxidizing impurities present in the gas feedstock during the growth and cooling stages in low-pressure CVD. First, we show that for a partial pressure of oxidizing impurities below 1 ppb, hydrogen is not required for graphene growth from methane. Second, we demonstrate that purified hydrogen does not etch graphene films at typical growth temperatures. Third, a flow of purified hydrogen during cooling counterbalances graphene etching by oxygen, thus protecting the films. Films grown under high purity conditions (low level of oxidizing impurities) exhibit a higher bilayer and multilayer coverage; Surprisingly some of these bi-and multilayer graphene islands are twisted with respect to the first graphene layer as revealed by hyperspectral Raman imaging. Overall, this growth behavior suggests a competitive action between film growth from the carbon precursors and etching by the oxidative species. Our results provide new fundamental insights on the graphene CVD growth, highlighting the important yet indirect role of hydrogen and its major influence on controlling the action of oxidizing impurities on nucleation and etching during the growth process.
We report anomalous antiresonances in the infrared spectra of doped and disordered single layer graphene. Measurements in both reflection microscopy and transmission configurations of samples grafted with halogenophenyl moieties are presented. Asymmetric transparency windows at energies corresponding to phonon modes near the Γ and K points are observed, in contrast to the featureless spectrum of pristine graphene. These asymmetric antiresonances are demonstrated to vary as a function of the chemical potential and defect density. We propose a model that involves coherent intraband scattering with defects and phonons, thus relaxing the optical selection rule forbidding access to q ≠ Γ phonons. This interpretation of the new phenomenon is supported by our numerical simulations that reproduce the experimental features.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.