New architectures for telescopes or powerful lasers require segmented wave front metrology. This paper deals with a new interferometric wave front sensing technique called PISTIL (PISton and TILt), able to recover both piston and tilts of segment beams. The main advantages of the PISTIL technique are the absence of a reference arm and an access to the tilt information. An explanation of the principle, as well as an experimental implementation and the use of a segmented active mirror, are presented. Measurement errors of λ/200 for piston and 40 µrad for tilts have been achieved, well beyond performances requested for the above mentioned applications.
We present a novel interferometric technique dedicated to the measurement of relative phase differences (pistons) and tilts of a periodically segmented wavefront. Potential applications include co-phasing of segmented mirrors of Keck-like telescopes as well as coherent laser beam combining. The setup only requires a holes mask selecting the center part of each element, a diffracting component, and a camera. Recorded interferogram is made of many subareas with sinusoidal fringe pattern. From each pattern, piston is extracted from fringe shift and tilts from fringe frequency and orientation. The pattern analysis is simple enough to enable kilohertz rate operation. The λ ambiguities are solved by a two-wavelength measurement. This technique is compatible with a very high number of elements and can be operated in the presence of atmospheric turbulence.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.