The effects of wetlands on stream flows are well established, namely mitigating flow regimes through water storage and slow water release. However, their effectiveness in reducing flood peaks and sustaining low flows is mainly driven by climate conditions and wetland type with respect to their connectivity to the hydrographic network (i.e. isolated or riparian wetlands). While some studies have demonstrated these hydrological functions/services, few of them have focused on the benefits to the hydrological regimes and their evolution under climate change (CC) and, thus, some gaps persist. The objective of this study was to further advance our knowledge with that respect. The PHYSITEL/HYDROTEL modelling platform was used to assess current and future states of watershed hydrology of the Becancour and Yamaska watersheds, Quebec, Canada. Simulation results showed that CC will induce similar changes on mean seasonal flows, namely larger and earlier spring flows leading to decreases in summer and fall flows. These expected changes will have different effects on 20-year and 100-year peak flows with respect to the considered watershed. Nevertheless, conservation of current wetland states should: (i) for the Becancour watershed, mitigate the potential increase in 2-year, 20-year and 100-year peak flows; and (ii) for the Yamaska watershed, accentuate the potential decrease in the aforementioned indicators. However, any loss of existing wetlands would be detrimental for 7-day 2-year and 10-year as well as 30-day 5-year low flows.
Abstract:Chloride is a major anion in soil water and its concentration rises essentially as a function of evapotranspiration. Compared to herbaceous vegetation, high transpiration rates are measured for isolated trees, shelterbelts or hedgerows. This article deals with the influence of a tree hedge on the soil and groundwater Cl concentrations and the possibility of using Cl as an indicator of transpiration and water movements near the tree rows. Cl concentrations were measured over 1 year at different depths in the unsaturated zone and in the groundwater along a transect intersecting a bottomland oak hedge. We observed a strong spatial heterogeneity of Cl concentrations, with very high values up to 2 g l 1 in the unsaturated zone and 1Ð2 g l 1 in the upper part of the groundwater. This contrasts with the low and homogeneous concentrations (60-70 mg l 1 ) in the deeper part of the groundwater. Cl accumulation in the unsaturated zone at the end of the vegetation season allows us to identify the active root zone extension of trees. In winter, upslope of the tree row, downwards leaching partly renews the soil solution in the root zone, while the slow water movement under the trees or farther downslope results in Cl accumulation and leads to a salinization of the soil and groundwater. This salinization is of the same order as experimental conditions produce negative effects on oak seedlings. The measurement of Cl concentrations in the unsaturated zone under tree rows at the end of the vegetation season would indicate whether certain topographic, pedological or climatic conditions are likely to favour a strong salinization of the soil, as observed in the present study.
Abstract:Mathematical modelling is a well-accepted framework to evaluate the effects of wetlands on stream flow and watershed hydrology in general. Although the integration of wetland modules into a distributed hydrological model represents a costeffective way to make this assessment, the added value brought by landscape-specific modules to a model's ability to replicate basic hydrograph characteristics remains unclear. The objectives of this paper were the following: (i) to present the adaptation of PHYSITEL (a geographic information system) to parameterize isolated and riparian wetlands; (ii) to describe the integration of specific isolated wetland and riparian wetland modules into HYDROTEL, a distributed hydrological model; and (iii) to evaluate the performance of the updated modelling platform with respect to the capacity of replicating various hydrograph characteristics. To achieve this, two sets of simulations were performed (with and without wetland modules), and the added value was assessed at three river segments of the Becancour River watershed, Quebec, Canada, using six general goodness-of-fit indicators and 14 water flow criteria. A sensitivity analysis of the wetland module parameters was performed to characterize their impact on stream flows of the modelled watershed. Results of this study indicate the following: (i) integration of specific wetland modules can slightly increase the capacity of HYDROTEL to replicate basic hydrograph characteristics; and (ii) the updated modelling platform allows for the explicit assessment of the impact of wetlands (e.g. typology and location) on watershed hydrology.
Wetlands play a significant role on the hydrological cycle, reducing flood peaks through water storage functions and sustaining low flows through slow water release ability. However, their impacts on water resources availability and flood control are mainly driven by wetland type (e.g. isolated wetland—IW—and riparian wetland—RW) and location within a watershed. Consequently, assessing the qualitative and quantitative impact of wetlands on hydrological regimes has become a relevant issue for scientists as well as stakeholders and decision‐makers. In this study, the distributed hydrological model, HYDROTEL, was used to investigate the role and impact of the geographic distribution of isolated and RWs on stream flows of the Becancour River watershed of the St Lawrence Lowlands, Quebec, Canada. The model was set up and calibrated using available datasets (i.e. DEM, soil, wetland distribution, climate, land cover, and hydrometeorological data for the 1969–2010 period). Different wetland theoretical location tests (WTLT) were simulated. Results were used to determine whether stream flow parameters, related to peak flows and low flows, were related to: (i) geographic location of wetlands, (ii) typology of wetlands, and (iii) seasonality. The contribution of a particular wetland was assessed using intrinsic characteristics (e.g. surface area, typology) and extrinsic factors (e.g. location in the watershed landscape and seasonality). Through these investigations, the results suggest, to some extent, that both IWs and RWs impact landscape hydrology. The more IWs are located in the upper part of the watershed, the greater their effect on both on high flow damping and low flow support seems to be. The more RWs are connected to a main stream, the greater their effect is. Our modelling results indicate that local landscape conditions may influence the wetland effect; promoting or limiting their efficiency, and thus their impacts on stream flows depend on a combined effect of wetland and landscape attributes. Copyright © 2015 John Wiley & Sons, Ltd.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.