Kinematic variables are valid, reliable measures and can be used clinically to diagnose chronic non-specific low back pain, manage treatment, and as quantitative outcome measures for clinical trial interventions.
This study provides a standardized, valid, reliable and sensitive protocol to quantify upper limb impairments in stroke patients, using a planar robot.
This single-blind randomized controlled trial provides the first evidence that RAT is effective in children with CP. Future studies should investigate the long-term effects of this therapy.
The impact of transcranial direct current stimulation (tDCS) is controversial in the neurorehabilitation literature. It has been suggested that tDCS should be combined with other therapy to improve their efficacy. To assess the effectiveness of a single session of upper limb robotic-assisted therapy (RAT) combined with real or sham-tDCS in chronic stroke patients. Twenty-one hemiparetic chronic stroke patients were included in a randomized, controlled, cross-over double-blind study. Each patient underwent two sessions 7 days apart in a randomized order: (a) 20 min of real dual-tDCS associated with RAT (REAL+RAT) and (b) 20 min of sham dual-tDCS associated with RAT (SHAM+RAT). Patient dexterity (Box and Block and Purdue Pegboard tests) and upper limb kinematics were evaluated before and just after each intervention. The assistance provided by the robot during the intervention was also recorded. Gross manual dexterity (1.8±0.7 blocks, P=0.008) and straightness of movement (0.01±0.03, P<0.05) improved slightly after REAL+RAT compared with before the intervention. There was no improvement after SHAM+RAT. The post-hoc analyses did not indicate any difference between interventions: REAL+RAT and SHAM+RAT (P>0.05). The assistance provided by the robot was similar during both interventions (P>0.05). The results showed a slight improvement in hand dexterity and arm movement after the REAL+RAT tDCS intervention. The observed effect after a single session was small and not clinically relevant. Repetitive sessions could increase the benefits of this combined approach.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.