Background Approximately two thirds of stroke survivors maintain upper limb (UL) impairments and few among them attain complete UL recovery 6 months after stroke. Technological progress and gamification of interventions aim for better outcomes and constitute opportunities in self- and tele-rehabilitation. Objectives Our objective was to assess the efficacy of serious games, implemented on diverse technological systems, targeting UL recovery after stroke. In addition, we investigated whether adherence to neurorehabilitation principles influenced efficacy of games specifically designed for rehabilitation, regardless of the device used. Method This systematic review was conducted according to PRISMA guidelines (PROSPERO registration number: 156589). Two independent reviewers searched PubMed, EMBASE, SCOPUS and Cochrane Central Register of Controlled Trials for eligible randomized controlled trials (PEDro score ≥ 5). Meta-analysis, using a random effects model, was performed to compare effects of interventions using serious games, to conventional treatment, for UL rehabilitation in adult stroke patients. In addition, we conducted subgroup analysis, according to adherence of included studies to a consolidated set of 11 neurorehabilitation principles. Results Meta-analysis of 42 trials, including 1760 participants, showed better improvements in favor of interventions using serious games when compared to conventional therapies, regarding UL function (SMD = 0.47; 95% CI = 0.24 to 0.70; P < 0.0001), activity (SMD = 0.25; 95% CI = 0.05 to 0.46; P = 0.02) and participation (SMD = 0.66; 95% CI = 0.29 to 1.03; P = 0.0005). Additionally, long term effect retention was observed for UL function (SMD = 0.42; 95% CI = 0.05 to 0.79; P = 0.03). Interventions using serious games that complied with at least 8 neurorehabilitation principles showed better overall effects. Although heterogeneity levels remained moderate, results were little affected by changes in methods or outliers indicating robustness. Conclusion This meta-analysis showed that rehabilitation through serious games, targeting UL recovery after stroke, leads to better improvements, compared to conventional treatment, in three ICF-WHO components. Irrespective of the technological device used, higher adherence to a consolidated set of neurorehabilitation principles enhances efficacy of serious games. Future development of stroke-specific rehabilitation interventions should further take into consideration the consolidated set of neurorehabilitation principles.
The impact of transcranial direct current stimulation (tDCS) is controversial in the neurorehabilitation literature. It has been suggested that tDCS should be combined with other therapy to improve their efficacy. To assess the effectiveness of a single session of upper limb robotic-assisted therapy (RAT) combined with real or sham-tDCS in chronic stroke patients. Twenty-one hemiparetic chronic stroke patients were included in a randomized, controlled, cross-over double-blind study. Each patient underwent two sessions 7 days apart in a randomized order: (a) 20 min of real dual-tDCS associated with RAT (REAL+RAT) and (b) 20 min of sham dual-tDCS associated with RAT (SHAM+RAT). Patient dexterity (Box and Block and Purdue Pegboard tests) and upper limb kinematics were evaluated before and just after each intervention. The assistance provided by the robot during the intervention was also recorded. Gross manual dexterity (1.8±0.7 blocks, P=0.008) and straightness of movement (0.01±0.03, P<0.05) improved slightly after REAL+RAT compared with before the intervention. There was no improvement after SHAM+RAT. The post-hoc analyses did not indicate any difference between interventions: REAL+RAT and SHAM+RAT (P>0.05). The assistance provided by the robot was similar during both interventions (P>0.05). The results showed a slight improvement in hand dexterity and arm movement after the REAL+RAT tDCS intervention. The observed effect after a single session was small and not clinically relevant. Repetitive sessions could increase the benefits of this combined approach.
Background After a stroke, experts recommend regular monitoring and kinematic assessments of patients to objectively measure motor recovery. With the rise of new technologies and increasing needs for neurorehabilitation, an interest in virtual reality has emerged. In this context, we have developed an immersive virtual reality version of the Box and Block Test (BBT-VR). The aim of this study was to assess the concurrent validity of the BBT-VR among patients with stroke and healthy participants. Methods Twenty-three healthy participants and 22 patients with stroke were asked to perform the classical Box and Block Test (BBT) and BBT-VR three times with both hands. Concurrent validity was assessed through correlations between these two tests and reliability of the BBT-VR through correlation on test–retest. Usability of the BBT-VR was also evaluated with the System Usability Scale. Hand kinematic data extracted from controller’s 3D position allowed to compute mean velocity (Vmean), peak velocity (Vpeak) and smoothness (SPARC). Results Results showed strong correlations between the number of blocks displaced with the BBT and the BBT-VR among patients with stroke for affected (r = 0.89; p < 0.001) and less-affected hands (r = 0.76; p < 0.001) and healthy participants for dominant (r = 0.58; p < 0.01) and non-dominant hands (r = 0.68; p < 0.001). Reliability for test–retest was excellent (ICC > 0.8; p < 0.001) and usability almost excellent (System Usability Scale = 79 ± 12.34%). On average participants moved between 30 and 40% less blocks during the BBT-VR than during the BBT. Healthy participants demonstrated significantly higher kinematic measures (Vmean = 0.22 ± 0.086 ms−1; Vpeak = 0.96 ± 0.341 ms−1; SPARC = − 3.31 ± 0.862) than patients with stroke (Vmean = 0.12 ± 0.052 ms−1; Vpeak = 0.60 ± 0.202 ms−1; SPARC = − 5.04[− 7.050 to − 3.682]). Conclusion The BBT-VR is a usable, valid and reliable test to assess manual dexterity, providing kinematic parameters, in a population of patients with stroke and healthy participants. Trial registration http://www.clinicaltrials.gov; Unique identifier: NCT04694833, Date of registration: 11/24/2020
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.