International audienceEntomology has had many applications in many biological domains (i.e insect counting as a biodiversity index). To meet a growing biological demand and to compensate a decreasing workforce amount, automated entomology has been around for decades. This challenge has been tackled by computer scientists as well as by biologists themselves. This survey investigates fourty-four studies on this topic and tries to give a global picture on what are the scientific locks and how the problem was addressed. Views are adopted on image capture, feature extraction, classification methods and the tested datasets. A general discussion is finally given on the questions that might still remain unsolved such as: the image capture conditions mandatory to good recognition performance, the definition of the problem and whether computer scientist should consider it as a problem in its own or just as an instance of a wider image recognition problem
Many tasks in computer vision and pattern recognition are formulated as graph matching problems. Despite the NP-hard nature of the problem, fast and accurate approximations have led to significant progress in a wide range of applications. Learning graph matching functions from observed data, however, still remains a challenging issue. This paper presents an effective scheme to parametrize a graph model for object matching in a classification context. For this, we propose a representation based on a parametrized model graph, and optimize it to increase a classification rate. Experimental evaluations on real datasets demonstrate the effectiveness (in terms of accuracy and speed) of our approach against graph classification with hand-crafted cost functions.
The quality of document images has direct impacts on the performance of document image processing systems. Document Image Quality Assessment (DIQA) is, therefore, of fundamental importance to a numerous document processing applications. As manual quality assessment is almost impossible for a huge volume of document images generated in day-today life, it is critical to develop intelligent machine operated methods to estimate the quality of document images. In this paper, a blind document image quality assessment method is proposed to deal with the problem of DIQA in real scenarios, as reference images are not always available. To estimate the quality of a document image, the document is rst sampled into a set of patches. The extracted patches are then ltered out based on their level of foreground information using a patch selection strategy. For every selected patch, a cluster assignment is then performed to obtain its quality from a quality aware bag of visual words constructed using k-means clustering. An average pooling is nally employed to estimate the quality of the input document image. To evaluate the proposed method, a dataset composed of document images and three scene image datasets were considered for experimentation. The results obtained from the proposed method demonstrate the eectiveness of the proposed DIQA method. These achievements in applied computational intelligence, expert and decision support systems make a good foundation for creating practical tools to automate document image forgery detection, and archiving process.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.