We report a new cyanide-bridged Cs⊂{FeCo} box, a soluble model of photomagnetic Prussian blue analogues (PBAs). The Cs ion has a high affinity for the box and can replace the K ion in the preformed K-cube. This exchange is kinetically impeded at room temperature but is accelerated by heating and using the 18-crown-6 ether. The inserted Cs ion confers a high robustness to the cube, which withstands boiling, as shown by variable-temperature NMR studies. The stability of this model complex in solution allows the probing of the electronic interaction between the alkali ion and the cyanide cage by using various techniques. These interactions are known to play a role in the photomagnetic behaviour of PBAs. Firstly, the Cs NMR spectroscopy proves that there is an electronic communication between the encapsulated alkali ion and the cyanide cage. The measured up-field signal, observed at ca. -200 ppm at 300 K, reveals that a certain amount of spin density is transferred through the bonds from the paramagnetic Co(ii) ion to the encapsulated cation. Secondly, cyclovoltammetric studies show that the nature of the inserted ions affects the redox properties of the cage and influences the electronic communication between the metal ions. However, the differences in the electrochemical properties of the K-cube and the Cs-cube remain moderate. As the switching properties are influenced by the redox potential of the Fe and Co centers, similar photomagnetic behaviour is observed, with both of them being highly photomagnetic. This result contrasts strikingly with previous studies on the 3D polymeric PBAs, where the PBAs with a high amount of Cs show poor photomagnetic behaviour. In that case, cooperative behaviour likely influences the switching properties. Finally, EPR spectroscopy shows that the K-cube is more anisotropic than the Cs-cube. This difference is reflected in the changes occurring in the slow magnetic relaxation (single molecule magnet behaviour) observed in the two cubes.
Divalent lanthanide organometallics are well‐known highly reducing compounds usually used for single electron transfer reactivity and small molecule activation. Thus, their very reactive nature prevented for many years the study of their physical properties, such as magnetic studies on a reliable basis. Herein, the access to rare organometallic sandwich compounds of TmII with the cyclooctatetraenyl (Cot) ligand impacts on the use of divalent organolanthanide compounds as an additional strategy for the design of performing Single Molecule Magnets (SMM). The first divalent thulium sandwich complex with f13 configuration behaving as a single‐molecule magnet in absence of DC field is highlighted.
Over more than 50 years, intermediate valence states in lanthanide compounds have often resulted in unexpected or puzzling spectroscopic and magnetic properties. Such experimental singularities could not be rationalised until new theoretical models involving multiconfigurational electronic ground states were established. In this minireview, the different singularities that have been observed among lanthanide complexes are highlighted, the models used to rationalise them are detailed and how such electronic effects may be adjusted depending on energy and symmetry considerations is considered. Understanding and tuning the ground‐state multiconfigurational behaviour in lanthanide complexes may open new doors to modular and unusual reactivities.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.