Ball screws are key components in machine tool linear feed drives since they translate the motors' rotary motion into linear motion. With usage over time, however, tribological degradation of ball screws and the successive loss in preload can cause imprecise position accuracy and loss in manufacturing precision. Therefore condition monitoring (CM) of ball screws is important since it enables just in time replacement as well as the prevention of production stoppages and wasted material. This paper proposes an idea based on a probabilistic classification approach to monitor a ball screw's preload condition with the help of modal parameters identified from vibration signals. It will be shown that by applying probabilistic classification models, uncertainties with respect to degradation can be quantified in an intuitive way and therefore can enhance the basis of decision making. Furthermore, it will be shown how a probabilistic classification approach allows the estimation of remaining useful life (RUL) for ball screws when the user only has access to discrete preload observations.
Ball screws and linear guides are among the key components of machine tools. Abrasive wear causes a loss in stiffness of these components over time affecting the attainable manufacturing precision and, eventually, leads to failures and costly down-time. In order to control these effects, the condition of the crucial feed drive components needs to be monitored. This paper shows, how the feed drive condition can be monitored by looking at the modal parameters of the system. It will be shown, that preload loss cannot only be detected globally, but can be traced back to the worn component. A distinct test cycle was developed for this purpose.
The task of remaining useful life (RUL) estimation is a major challenge within the field of prognostics and health management (PHM). The quality of the RUL estimates determines the economical feasibility of the application of predictive maintenance strategies, that rely on accurate predictions. Hence, many effective methods for RUL estimation have been developed in the recent years. Especially deep learning methods have been among the best performing ones setting new record accuracies on bench mark data sets. However, those approaches often rely on numerous and representative run-to-failure sequences of the components under investigation. In real-world use cases, this kind of data (i.e. run-to-failure sequences and RUL labels) is hardly ever present. Therefore, this paper proposes a new, data-efficient method, which is based on Gaussian process classification to derive abstract health indicator (HI) values in a first step, and warped, monotonic Gaussian process regression for indirect RUL estimation in a second step. The proposed approach does neither rely on entire run-to-failure sequences nor on any RUL labels and was tested on the benchmark C-MAPSS turbo fan and FEMTO bearing data sets, achieving comparable results to the state-ofthe art whilst using only a small fraction of the available training data. Hence, the proposed approach allows RUL estimation in use cases, in which gathering enough failure data for the application of deep learning models is infeasible.
In the work described here, Gaussian process regression was applied to predict the ultimate tensile strength of friction stir welds through data evaluation and to therefore avoid destructive testing. For data generation, a total of 54 welding experiments were conducted in the butt joint configuration using the aluminum alloy EN AW-6082-T6. Four tensile samples were taken from each of the 54 experiments and the resulting ultimate tensile strength of the weld seam segment was modeled as a function of the weld’s surface topography. Further models were created for comparison, which received either the process variables or the process parameters to predict the ultimate tensile strength. It was shown that the ultimate tensile strength can be accurately predicted based on the weld’s surface topography. Especially for low welding speeds, the correlation coefficients between the true and the predicted ultimate tensile strength were high. However, overall, even higher correlation coefficients could be achieved when providing the process variables or the process parameters to the model. In conclusion, it was shown that the developed Gaussian process regression model is a powerful approach for replacing destructive testing and for predicting ultimate tensile strength based solely on data that can be collected non-destructively.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.