Newly emerging pandemics like COVID-19 call for predictive models to implement precisely tuned responses to limit their deep impact on society. Standard epidemic models provide a theoretically well-founded dynamical description of disease incidence. For COVID-19 with infectiousness peaking before and at symptom onset, the SEIR model explains the hidden build-up of exposed individuals which creates challenges for containment strategies. However, spatial heterogeneity raises questions about the adequacy of modeling epidemic outbreaks on the level of a whole country. Here, we show that by applying sequential data assimilation to the stochastic SEIR epidemic model, we can capture the dynamic behavior of outbreaks on a regional level. Regional modeling, with relatively low numbers of infected and demographic noise, accounts for both spatial heterogeneity and stochasticity. Based on adapted models, short-term predictions can be achieved. Thus, with the help of these sequential data assimilation methods, more realistic epidemic models are within reach.
In eye-movement control during reading, advanced process-oriented models have been developed to reproduce behavioral data. So far, model complexity and large numbers of model parameters prevented rigorous statistical inference and modeling of interindividual differences. Here we propose a Bayesian approach to both problems for one representative computational model of sentence reading (SWIFT; Engbert et al., Psychological Review, 112, 2005, pp. 777-813). We used experimental data from 36 subjects who read text in a normal and one of four manipulated text layouts (e.g., mirrored and scrambled letters). The SWIFT model was fitted to subjects and experimental conditions individually to investigate between-subject variability. Based on posterior distributions of model parameters, fixation probabilities and durations are reliably recovered from simulated data and reproduced for withheld empirical data, at both the experimental condition and subject levels. A subsequent statistical analysis of model parameters across reading conditions generates model-driven explanations for observable effects between conditions.
Newly emerging pandemics like COVID-19 call for better predictive models to implement early and precisely tuned responses to their deep impact on society. Standard epidemic models provide a theoretically well-founded description of dynamics of disease incidence. For COVID-19 with infectiousness peaking before and at symptom onset, the SEIR model explains the hidden build-up of exposed individuals which challenges containment strategies, in particular, due to delayed epidemic responses to non-pharmaceutical interventions. However, spatial heterogeneity questions the adequacy of modeling epidemic outbreaks on the level of a whole country. Here we show that sequential data assimilation of a stochastic version of the standard SEIR epidemic model captures dynamical behavior of outbreaks on the regional level. Such regional modeling of epidemics with relatively low numbers of infected and realistic demographic noise accounts for both spatial heterogeneity and stochasticity. Based on adapted regional models, population level short-term predictions can be achieved. More realistic epidemic models that include spatial heterogeneity are within reach via sequential data assimilation methods.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.