In this article a systematic approach of modelling and control for a parallel robotic manipulator is presented. Regarding the framework of structured analysis of dynamical systems the derivation of a differential-algebraic model of the mechanical system is straightforward. Using some differential-geometric considerations based on invariant manifolds and the definition of fictitious additional input and output variables a suitable state feedback can be constructed which transforms the differential-algebraic representation into a state-space model for the robotic manipulator. On this basis a classical two-degree-of-freedom (2-DOF) control structure has been designed using the well-known input-output linearization and a linear time-variant Kalman filter-based output feedback. Finally, the control structure including a friction compensation is applied to the robotic system in the laboratory which shows the practical applicability of the proposed procedure.
Water hammer phenomena are important issues for the design and the operation of hydro power plants. Especially, if several reversible pump-turbines are coupled hydraulically there may be strong unit interactions. The precise prediction of all relevant transients is challenging. Regarding a recent pump-storage project, dynamic measurements motivate an improved turbine modeling approach making use of a Thoma number dependency. The proposed method is validated for several transient scenarios and turns out to improve correlation between measurement and simulation results significantly. Starting from simple scenarios, this allows better prediction of more complex transients. By applying a fully automated simulation procedure broad operating ranges of the highly nonlinear system can be covered providing a consistent insight into the plant dynamics. This finally allows the optimization of the closing strategy and hence the overall power plant performance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.