In recent history, reinforcement learning (RL) proved its capability by solving complex decision problems by mastering several games. Increased computational power and the advances in approximation with neural networks (NN) paved the path to RL’s successful applications. Even though RL can tackle more complex problems nowadays, it still relies on computational power and runtime. Quantum computing promises to solve these issues by its capability to encode information and the potential quadratic speedup in runtime. We compare tabular Q-learning and Q-learning using either a quantum or a classical approximation architecture on the frozen lake problem. Furthermore, the three algorithms are analyzed in terms of iterations until convergence to the optimal behavior, memory usage, and runtime. Within the paper, NNs are utilized for approximation in the classical domain, while in the quantum domain variational quantum circuits, as a quantum hybrid approximation method, have been used. Our simulations show that a quantum approximator is beneficial in terms of memory usage and provides a better sample complexity than NNs; however, it still lacks the computational speed to be competitive.
Nowadays, Artificial Intelligence systems have expanded their competence field from research to industry and daily life, so understanding how they make decisions is becoming fundamental to reducing the lack of trust between users and machines and increasing the transparency of the model. This paper aims to automate the generation of explanations for model-free Reinforcement Learning algorithms by answering “why” and “why not” questions. To this end, we use Bayesian Networks in combination with the NOTEARS algorithm for automatic structure learning. This approach complements an existing framework very well and demonstrates thus a step towards generating explanations with as little user input as possible. This approach is computationally evaluated in three benchmarks using different Reinforcement Learning methods to highlight that it is independent of the type of model used and the explanations are then rated through a human study. The results obtained are compared to other baseline explanation models to underline the satisfying performance of the framework presented in terms of increasing the understanding, transparency and trust in the action chosen by the agent.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.