Birch (Betula pendula Roth.) and beech (Fagus sylvatica L.) solid wood and plywood were overmolded with polyamide 6 (PA 6) and polypropylene (PP) to investigate their mechanical properties and interfacial adhesion. In the case of PA 6, maximum tensile shear strengths values of more than 8 to 9 MPa were obtained for birch and beech, respectively. The values are comparable to bond strengths of commercial joints bonded with formaldehyde-containing amino-plastics. Perpendicular to the wood elements, bond strength values of 3 MPa was achieved for PA 6. The penetration of the polymers into the wood structure results in a non-densified interphase and subsequent plastic deformation of the wood structure beyond the interphase. These compressed areas influenced the interfacial adhesion and mechanical interlocking. SEM and XPS analysis revealed different interpenetration behavior of the polymers into the wood structure, with chemical interaction confirmed only for wood and PA 6 but not PP.
The development of high-performance, veneer-based wood composites is a topic of increasing importance due to the high design flexibility and the comparable mechanical performance to solid wood. Part of this improved mechanical performance can be contributed to the size effect present in wood. Based on previous findings in the literature, this size effect can be either strengthening or weakening. The presented study investigates the influence of thickness and load angle on the tensile strength and tensile stiffness of peeled veneers compared to thin sawn timber. Veneers with thicknesses of 0.5 ± 0.05 mm, 1.0 ± 0.05 mm and 1.5 ± 0.05 mm as well as sawn wood with thicknesses of 1.5 ± 0.1 mm, 3.0 ± 0.1 mm and 5.0 ± 0.1 mm were tested in tension under different load angles (0°, 45° and 90°). The results only partly confirm a size effect for strength parallel to the grain. The strength perpendicular to the grain increased significantly between 0.5 mm and 1.5 mm, with a significant decrease between 1.5 mm and 5.0 mm. The presence of lathe checks diminished the strength perpendicular to the grain of the veneers by about 70% compared to solid wood, partly overshadowing a possible strengthening effect. It was concluded that a transition from a strengthening to a weakening behaviour lies in the range of multiple millimetres, but further investigations are needed to quantify this zone more precisely. The presented results provide a useful basis for the development of veneer-based wood composites with a performance driven layer-thickness.
European beech is one of the dominating wood species in central Europe and the most abundant hardwood species in Austrian, German and Swiss forests. Today, it is predominantly used for the provision of energy and in the furniture industry. With the increasing demand on forests to provide sustainable raw materials for energy as well as products, the importance of lesser-used wood species like European beech has continuously increased over the last decade. The application in load-bearing products has gained significant interest. In order to connect the current and historical state of knowledge about this wood species, this review provides an overview of the past and present utilization of European beech wood. On the basis of the historical literature, technical approvals and standards of established products, it aims to summarize the extensive state of the art of this wood species and provide an overview of recent scientific publications in the field of wood material science. Based on the reviewed literature, current research efforts deal with different engineered wood products like glued laminated timber, cross-laminated timber and laminated veneer lumber. Furthermore, strength grading, adhesive technology as well as improving dimensional stability is of particular interest.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.