Creation and exchange of knowledge depends on collaboration. Recent work has suggested that the emergence of collaboration frequently relies on geographic proximity. However, being co-located tends to be associated with other dimensions of proximity, such as social ties or a shared organizational environment. To account for such factors, multiple dimensions of proximity have been proposed, including cognitive, institutional, organizational, social and geographical proximity. Since they strongly interrelate, disentangling these dimensions and their respective impact on collaboration is challenging. To address this issue, we propose various methods for measuring different dimensions of proximity. We then present an approach to compare and rank them with respect to the extent to which they indicate co-publications and co-inventions. We adapt the HypTrails approach, which was originally developed to explain human navigation, to co-author and co-inventor graphs. We evaluate this approach on a subset of the German research community, specifically academic authors and inventors active in research on artificial intelligence (AI). We find that social proximity and cognitive proximity are more important for the emergence of collaboration than geographic proximity.
A large amount of data accommodated in knowledge graphs (KG) is actually metric. For example, the Wikidata KG contains a plenitude of metric facts about geographic entities like cities, chemical compounds or celestial objects. In this paper, we propose a novel approach that transfers orometric (topographic) measures to bounded metric spaces. While these methods were originally designed to identify relevant mountain peaks on the surface of the earth, we demonstrate a notion to use them for metric data sets in general. Notably, metric sets of items inclosed in knowledge graphs. Based on this we present a method for identifying outstanding items using the transferred valuations functions âĂŹisolationâĂŹ and âĂŹprominenceâĂŹ. Building up on this we imagine an item recommendation process. To demonstrate the relevance of the novel valuations for such processes we use item sets from the Wikidata knowledge graph. We then evaluate the usefulness of âĂŹisola-tionâĂŹ and âĂŹprominenceâĂŹ empirically in a supervised machine learning setting. In particular, we find structurally relevant items in the geographic population distributions of Germany and France.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.