In this paper, we present a study on Reinforcement Learning optimization models for automatic trading, in which we focus on the effects of varying the observation time. Our Reinforcement Learning agents feature a Convolutional Neural Network (CNN) together with Long Short-Term Memory (LSTM) and act on the basis of different observation time spans. Each agent tries to maximize trading profit by buying or selling one of a number of contracts in a simulated market environment for Contracts for Difference (CfD), considering correlations between individual assets by architecture. To decide which action to take on a specific contract, an agent develops a policy which relies on an observation of the whole market for a certain period of time. We investigate whether or not there exists an optimal observation sequence length, and conclude that such a value depends on market dynamics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.