The aim of this retrospective study was to evaluate the characteristics of increased bone marrow uptake of 18F-FDG in patients with leukemia who underwent whole-body 18F-FDG PET/CT. The 18F-FDG PET/CT images of 9 patients with histologically proven leukemia were reviewed. The accumulation of 18F-FDG in the bone marrow was evaluated, and was compared with histological subtype, clinical course, and hematological findings. Nine patients (4 males, 5 females; age range, 5–58 years) had increased bone marrow uptake of 18F-FDG, including 6 patients with acute lymphoblastic leukemia, 1 with acute myeloid leukemia, 1 with chronic myeloid leukemia, and 1 with mature B cell neoplasm. Bone marrow uptake was generally diffuse but focal or inhomogeneous uptake was common, especially in the upper and lower extremities. Patients with increased bone marrow uptake of 18F-FDG commonly complained of fever and bone pain. No correlations between 18F-FDG uptake and peripheral blood findings were observed. Patients with leukemia may have increased bone marrow uptake of 18F-FDG on PET/CT, possibly reflecting leukemic cell activity. Leukemia can be included in the differential diagnosis when increased bone marrow uptake of 18F-FDG is observed.
MeAIB PET has better diagnostic results than FDG PET for the assessment of significant prostate cancer, and these PET studies showed complementary results. MRI has even better diagnostic results than (11)C-MeAIB PET. MeAIB accumulates in prostate cancer, which indicates that the system A amino acid transport pathway is activated in prostate cancer.
Introductions [N-methyl-C-11]α-Methylaminoisobutyric acid (MeAIB) is an artificial amino acid radiotracer used for PET study, which is metabolically stable in vivo. In addition, MeAIB is transported by system A neutral amino acid transport, which is observed ubiquitously in all types of mammalian cells. It has already been shown that MeAIB-PET is useful for malignant lymphoma, head and neck cancers, and lung tumors. However, there have been no reports evaluating the usefulness of MeAIB-PET in the diagnosis of brain tumors. The purpose of this study is to investigate the efficacy of system A amino acid transport PET imaging, MeAIB-PET, in clinical brain tumor diagnosis compared to [S-methyl-C-11]-L-methionine (MET)-PET. Methods Thirty-one consecutive patients (male: 16, female: 15), who were suspected of having brain tumors, received both MeAIB-PET and MET-PET within a 2-week interval. All patients were classified into two groups: Group A as a benign group, which included patients who were diagnosed as low-grade astrocytoma, grade II or less, or other low-grade astrocytoma (n=12) and Group B as a malignant group, which included patients who were diagnosed as anaplastic astrocytoma, glioblastoma multiforme (GBM), or recurrent GBM despite prior surgery or chemoradiotherapy (n=19). PET imaging was performed 20 min after the IV injection of MeAIB and MET, respectively. Semiquantitative analyses of MeAIB and MET uptake using SUVmax and tumor-to-contralateral normal brain tissue (T/N) ratio were evaluated to compare these PET images. ROC analyses for the diagnostic accuracy of MeAIB-PET and MET-PET were also calculated. Results In MeAIB-PET imaging, the SUVmax was 1.20 ± 1.29 for the benign group and 2.94 ± 1.22 for the malignant group (p < 0.005), and the T/N ratio was 3.77 ± 2.39 for the benign group and 16.83 ± 2.39 for the malignant group (p < 0.001). In MET-PET, the SUVmax was 3.01 ± 0.94 for the benign group and 4.72 ± 1.61 for the malignant group (p < 0.005), and the T/N ratio was 2.64 ± 1.40 for the benign group and 3.21 ± 1.14 for the malignant group (n.s.). For the analysis using the T/N ratio, there was a significant difference between the benign and malignant groups with MeAIB-PET with p < 0.001. The result of ROC analysis using the T/N ratio indicated a better diagnosis accuracy for MeAIB-PET for brain tumors than MET-PET (p < 0.01). Conclusions MeAIB, a system A amino acid transport-specific radiolabeled agents, could provide better assessments for detecting malignant type brain tumors. In a differential diagnosis between low-grade and high-grade astrocytoma, MeAIB-PET is a useful diagnostic imaging tool, especially in evaluations using the T/N ratio. Clinical trial registration This trial was registered with UMIN000032498.
Background Interim PET/CT is widely performed in lymphoma patients in clinical practice and clinical trials. Visual assessment using a 5-point scale is proposed for PET/CT interpretation, but intra- and inter-observer variation is not fully investigated. Purpose To investigate intra- and inter-observer variations in the reporting of interim positron emission tomography/computed tomography (PET/CT) in lymphoma patients, and the influence of clinical information on the interpretation. Material and Methods Three expert readers from different institutions interpreted interim PET/CT images of 42 consecutive patients with malignant lymphoma twice, with and without clinical information. The intra- and inter-observer agreements were calculated using the kappa statistic on a patient and a region basis. Results On a patient basis, intra-observer agreement, inter-observer agreement without information, and inter-observer agreement with information were within the ranges 0.48-0.62, 0.51-0.62, and 0.42-0.76, respectively. In the evaluation of lymph nodes, intra-observer agreement, inter-observer agreement without information, and inter-observer agreement with information were within the ranges 0.78-0.92, 0.80-0.82, and 0.77-0.83, respectively. Observer agreements were in almost perfect to substantial agreement categories for most lymphatic organs, but were generally low for the other organs. Conclusion The intra- and inter-observer agreements in evaluating interim PET/CT were relatively low for extranodal lesions, but they were substantial to almost perfect when interpreting nodal regions in malignant lymphoma, irrespective of the provision of clinical information, although memory at the first interpretation might have affected the intra-observer results.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.