Background18F-FDG positron emission tomography/computed tomography (PET/CT) is a successfully used imaging modality in oncology. The aim of the study was to investigate a connection of epithelial tumour differentiation grade with both semiquantitative and quantitative metabolic PET data focusing on creation of multiparametric model of tumour grade prediction utilising both standardised uptake value-based and texture-based 18F-FDG PET parameters and to investigate an influence of different image segmentation techniques on these parameters and modelling.Methods18F-FDG PET/CT data from 84 patients with epithelial malignant tumours was retrospectively analysed to create sets of both conventional semiquantitative (based on standardised uptake values), volumetric, and quantitative texture metabolic parameters of primary tumours with four different segmentation techniques.ResultsMost of the calculated volumetric and texture parameters showed to be influenced by segmentation technique. There was no significant difference in values of only three parameters, in all four segmentation methods: homogeneity, energy, and sphericity. Almost every extracted parameter in all segmentation technique subsets showed significant ability to discriminate individual tumour grade versus the subset of remaining two tumour grades. No parameters were able to discriminate all three tumour grades separately simultaneously or without the overlapping of threshold values. Group method of data handling (GMDH) modelling included all the above-mentioned extracted parameters. The highest value to discriminate tumour grade was achieved using ITK-SNAP segmentation, with an accuracy ranging from 91 to 100%.ConclusionsMultiparametric modelling with GMDH utilising both semiquantitative and quantitative texture metabolic PET parameters seems to be an interesting tool for non-invasive malignant epithelial tumours grade differentiation.