A national system for surveillance of prion diseases (PrDs) was established in Japan in April 1999. Here, we analyzed the relationships among prion protein gene (PRNP) mutations and the clinical features, cerebrospinal fluid (CSF) markers, and pathological characteristics of the major genotypes of genetic PrDs (gPrDs). We retrospectively analyzed age at onset and disease duration; the concentrations and incidences of 14-3-3 protein, tau protein, and abnormal prion protein (PrPSc) in the CSF of 309 gPrD patients with P102L, P105L, E200K, V180I, or M232R mutations; and brain pathology in 32 autopsied patients. Three clinical phenotypes were seen: rapidly progressive Creutzfeldt-Jakob disease (CJD), which included 100% of E200K cases, 70% of M232R, and 21% of P102L; slowly progressive CJD, which included 100% of V180I and 30% of M232R; and Gerstmann-Sträussler-Scheinker disease, which included 100% of P105L and 79% of P102L. PrPSc was detected in the CSF of more than 80% of patients with E200K, M232R, or P102L mutations but in only 39% of patients with V180I. V180I was accompanied by weak PrP immunoreactivity in the brain. Patients negative for PrPSc in the CSF were older at disease onset than positive patients. Patients with mutations associated with high 14-3-3 protein levels in the CSF typically had synaptic deposition of PrP in the brain and a rapid course of disease. The presence of small PrP protein fragments in brain homogenates was not correlated with other clinicopathological features. Positivity for PrPSc in the CSF may reflect the pathological process before or at disease onset, or abnormality in the secretion or metabolism of PrPSc. The amount of 14-3-3 protein in the CSF likely indicates the severity of the pathological process and accompanying neuronal damage. These characteristic features of the CSF in cases of gPrD will likely facilitate accurate diagnosis and clinicopathological study of the various disease subtypes.
ObjectivesGenetic Creutzfeldt-Jakob disease (CJD) due to V180I mutation in the prion protein gene (PRNP) is of great interest because of the differences from sporadic CJD and other genetic prion diseases in terms of clinical features, as well as pathological and biochemical findings. However, few systematic observations about the clinical features in patients with this unique mutation have been published. Therefore, the goal of this study was to relate this mutation to other forms of CJD from a clinical perspective.DesignWe analysed clinical symptoms, prion protein genetics, biomarkers in cerebrospinal fluid (CSF) and MRI of patients.Participants186 Japanese patients with the V180I mutation in PRNP.ResultsOur results indicate that the V180I mutation caused CJD at an older age, with a slower progression and a lower possibility of developing myoclonus, cerebellar, pyramidal signs and visual disturbance compared with classical sporadic CJD with methionine homozygosity at codon 129 of PRNP. Cognitive impairment was the major symptom. Diffuse hyperintensity of the cerebral cortex in diffusion-weighted MRI might be helpful for diagnosis. Owing to the low positivity of PrPSc in the CSF, genetic analysis was often required for a differential diagnosis from slowly progressive dementia.ConclusionsWe conclude that the V180I mutation in PRNP produces a late-developing and slow-developing, less severe form of CJD, whose lesions are uniquely distributed compared with sporadic and other genetic forms of CJD.
Accelerometry-based gait analysis is a promising approach in obtaining insightful information on the gait characteristics of patients with neurological disorders such as dementia and Parkinson's disease (PD). In order to improve its practical use outside the laboratory or hospital, it is required to design new metrics capable of quantifying ambulatory gait and their extraction procedures from long-term acceleration data. This paper presents a gait analysis method developed for such a purpose. Our system is based on a single trunk-mounted accelerometer and analytical algorithm for the assessment of gait behavior that may be context dependent. The algorithm consists of the detection of gait peaks from acceleration data and the analysis of multimodal patterns in the relationship between gait cycle and vertical gait acceleration. A set of six new measures can be obtained by applying the algorithm to a 24-h motion signal. To examine the performance and utility of our method, we recorded acceleration data from 13 healthy, 26 PD, and 26 mild cognitive impairment or dementia subjects. Each patient group was further classified into two, comprising 13 members each, according to the severity of the disease, and the gait behavior of the five groups was compared. We found that the normal, PD, and MCI/dementia groups show characteristic walking patterns which can be distinguished from one another by the developed gait measure set. We also examined conventional parameters such as gait acceleration, gait cycle, and gait variability, but failed to reproduce the distinct differences among the five groups. These findings suggest that the proposed gait analysis may be useful in capturing disease-specific gait features in a community setting.
We herein report a case of posterior reversible encephalopathy syndrome (PRES) and reversible cerebral vasoconstriction syndrome (RCVS) that occurred immediately after blood transfusion. A 64-year-old Japanese woman was diagnosed with liver cirrhosis due to hepatitis B 2 years ago. She was admitted to our hospital with hemorrhagic shock due to esophageal variceal rupture. She was hospitalized with rapid blood pumping transfusion, after which consciousness disorder appeared, and her blood pressure suddenly increased. Magnetic resonance imaging revealed PRES and RCVS. We speculated that hypoalbuminemia and blood transfusion might have been involved in the development of PRES and RCVS.
Background: Gait impairment in patients with Alzheimer’s disease (AD) and its relationship with cognitive function has been described, but reports of gait analysis in AD in daily living are limited.Objective: To investigate whether gait pattern of patients with AD in daily living is associated with cognitive function.Methods: Gait was recorded in 24 patients with AD and 9 healthy controls (HC) for 24 hours by using a portable gait rhythmogram. Mean gait cycle and gait acceleration were compared between the AD and HC groups. For the AD group, these gait metrics were assessed for correlations with cognitive function, as determined by the Mini Mental State Examination and Wechsler Memory Scale-Revised (WMS-R).Results: Although both gait parameters were not different between the patients with AD and HC, gait cycle in patients with AD was positively correlated with attention/concentration scores on the WMS-R (r = 0.578), and not with memory function. Patients with AD with attention scores as high as HC displayed a longer gait cycle than both HC (p = 0.048) and patients with AD with lower attention scores (p = 0.011). The patients with AD with lower attention scores showed a similar gait cycle with HC (p = 0.994).Conclusion: Patients with AD with impaired attentional function walk with faster gait cycle comparable to HC in daily living walking, which was unexpected based on previous gait analysis in clinical settings. This result probably reflects diminished consciousness to either the environment or instability of gait in the patients with AD with impaired attention.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.