Background
All living organisms experience physiological changes regulated by endogenous circadian rhythms. The main factor controlling the circadian clock is the duration of daylight. The aim of this research was to identify the impact of various lighting conditions on physiological parameters and gut microbiota composition in rats. 3 groups of outbred rats were subjected to normal light-dark cycles, darkness and constant lighting.
Results
After 1 and 3 months we studied urinary catecholamine levels in rats; indicators of lipid peroxidation and antioxidant activity in the blood; protein levels of BMAL1, CLOCK and THRA in the hypothalamus; composition and functional activity of the gut microbiota. Subjecting the rats to conditions promoting desynchronosis for 3 months caused disruptions in homeostasis.
Conclusions
Changing the lighting conditions led to changes in almost all the physiological parameters that we studied. Catecholamines can be regarded as a synchronization super system of split-level circadian oscillators. We established a correlation between hypothalamic levels of Bmal1 and urinary catecholamine concentrations. The magnitude of changes in the GM taxonomic composition was different for LL/LD and DD/LD but the direction of these changes was similar. As for the predicted functional properties of the GM which characterize its metabolic activity, they didn’t change as dramatically as the taxonomic composition. All differences may be viewed as a compensatory reaction to new environmental conditions and the organism has adapted to those conditions.
Electronic supplementary material
The online version of this article (10.1186/s12866-019-1535-2) contains supplementary material, which is available to authorized users.
We report that the results of our study indicate that Lactobacillus brevis 47 f strain isolated from the faeces of a healthy individual prevents the manifestations of experimental mucositis induced by treatment of Balb/c mice with the anticancer drug 5-fluorouracil (5 FU; 100 mg/kg i.p. × 3 days). The presence of damage to the intestine and the colon was determined by a morphometric analysis of specimens including the height of villi, the amount of goblet cells and infiltrating mononuclear cells, and the expression of the proliferative Ki-67 antigen. Changes in the lipid peroxidation in the blood and the intestine were determined by severalfold increase of the concentration of malonic dialdehyde. Oral administration of L. brevis 47 f strain prior to 5 FU decreased the drug-induced morphological and biochemical changes to their respective physiological levels; the ability of intestinal epitheliocytes to express Ki-67 was partially restored. These effects of L. brevis 47 f strain were more pronounced or similar to those of the reference compound Rebamipid, a quinoline derivative known to protect the gut from drug-induced toxicity. Thus, the new lactobacilli strain attenuates the severity of 5 FU-induced enteropathy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.