Infection by Pseudomonas aeruginosa has spread worldwide, with limited options for treatment. The purpose of this study was to investigate metallo-β-lactamase-producing P. aeruginosa strains and compare their genetic profile using samples collected from patients in intensive care units. Forty P. aeruginosa strains were isolated from two public hospitals in Campo Grande, Mato Grosso do Sul State, from January 1st, 2007 to June 31st, 2008. Profiles of antimicrobial susceptibility were determined using the agar diffusion method. Metallo-β-lactamase was investigated using the double-disk diffusion test and PCR. Molecular typing was performed by pulsed-field gel electrophoresis (PFGE). Respiratory and urinary tracts were the most common isolation sites. Of the 40 samples tested, 72.5% (29/40) were resistant to ceftazidime and 92.5% (37/40) to imipenem, whereas 65% (26/40) were resistant to both antimicrobials. Fifteen pan-resistant samples were found. Five percent (2/40) of samples were positive for metallo-β-lactamase on the phenotype test. No metallo-β-lactamase subtype was detected by PCR. Macrorestriction analysis revealed 14 distinct genetic patterns. Based on the superior accuracy of PCR, it can be inferred that P. aeruginosa isolates from the investigated hospitals have alternative mechanisms of carbapenem resistance. The results also suggest clonal spread of P. aeruginosa between the studied hospitals.
Infection by Pseudomonas aeruginosa has spread worldwide, with limited options for treatment. The purpose of this study was to investigate metallo-β-lactamase-producing P. aeruginosa strains and compare their genetic profile using samples collected from patients in intensive care units. Forty P. aeruginosa strains were isolated from two public hospitals in Campo Grande, Mato Grosso do Sul State, from January 1 st , 2007 to June 31 st , 2008. Profiles of antimicrobial susceptibility were determined using the agar diffusion method. Metallo-β-lactamase was investigated using the double-disk diffusion test and PCR. Molecular typing was performed by pulsed-field gel electrophoresis (PFGE). Respiratory and urinary tracts were the most common isolation sites. Of the 40 samples tested, 72.5% (29/40) were resistant to ceftazidime and 92.5% (37/40) to imipenem, whereas 65% (26/40) were resistant to both antimicrobials. Fifteen pan-resistant samples were found. Five percent (2/40) of samples were positive for metallo-β-lactamase on the phenotype test. No metallo-β-lactamase subtype was detected by PCR. Macrorestriction analysis revealed 14 distinct genetic patterns. Based on the superior accuracy of PCR, it can be inferred that P. aeruginosa isolates from the investigated hospitals have alternative mechanisms of carbapenem resistance. The results also suggest clonal spread of P. aeruginosa between the studied hospitals.
The biological activities and the structural arrangement of adevonin, a novel antimicrobial peptide, were investigated. The trypsin inhibitor ApTI, isolated from Adenanthera pavonina seeds, was used as a template for screening 18-amino acid peptides with predicted antimicrobial activity. Adevonin presented antimicrobial activity and minimum inhibitory concentrations (MIC) ranging from 1.86 to 7.35 µM against both Gram-positive andnegative bacterial strains. Moreover, adevonin exerted time-kill effects within 10 min and both susceptible and drug-resistant bacterial strains were affected by the peptide. In vitro and in vivo assays showed that, at MIC concentration, adevonin did not affect human fibroblasts (MRC-5) viability or Galleria mellonella survival, respectively. Hemolytic activity was observed only at high peptide concentrations. Additionally, nucleic acid efflux assays, gentian violet uptake and time-kill kinetics indicate that the antimicrobial activity of adevonin may be mediated by bacterial membrane damage. Furthermore, molecular dynamic simulation in the presence of SDS micelles and anionic membrane bilayers showed that adevonin acquired a stable α-helix secondary structure. Further studies are encouraged to better understand the mechanism of action of adevonin, as well as to investigate the anti-infective activity of this peptide.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.