BackgroundObesity and Type 2 diabetes have reached epidemic status worldwide. Wild lowbush blueberry (Vaccinium angustifolium Aiton) is a plant of the North American Aboriginal traditional pharmacopeia with antidiabetic potential, especially when it is fermented with Serratia vaccinii.MethodsA phytochemical fractionation scheme was used to identify potential bioactive compounds as confirmed by HPLC retention times and UV–Vis spectra. 3 T3-L1 cells were differentiated for 7 days with either Normal Blueberry Extract (NBE), Fermented Blueberry Extract (FBE/F1), seven fractions and four pure compounds. Triglyceride content was measured. Examination of selected intracellular signalling components (p-Akt, p-AMPK) and transcriptional factors (SREBP-1c and PPARγ) was carried out by Western blot analysis.ResultsThe inhibitory effect of FBE/F1 on adipocyte triglyceride accumulation was attributed to total phenolic (F2) and chlorogenic acid enriched (F3-2) fractions that both inhibited by 75%. Pure compounds catechol (CAT) and chlorogenic acid (CA) also inhibited adipogenesis by 70%. Treatment with NBE, F1, F3-2, CAT and CA decreased p-AKT, whereas p-AMPK tended to increase with F1. The expression of SREBP1-c was not significantly modulated. In contrast, PPARγ decreased in all experimental groups that inhibited adipogenesis.ConclusionsThese results demonstrate that fermented blueberry extract contains compounds with anti-adipogenic activity, which can serve to standardize nutraceutical preparations from fermented blueberry juice and to develop novel compounds with anti-obesity properties.
In this work, a new simplified method to find the fluidity enhancement of a non-Newtonian liquid under a pulsating (time-dependent) pressure gradient is analyzed. The fluidity enhancement is predicted by means of a Taylor series expansion of the flow rate in the vicinity of the applied wall stress. This expansion is shown to render the same results as several perturbation techniques used at length in the literature. Both new and the conventional perturbation methods are equivalent in their predictions of the fluidity enhancement. Even though the flow and rheology behavior are modeled using the Bautista-Manero-Puig constitutive equation, it is shown that the prediction of the fluidity enhancement does not depend on the constitutive model employed, but a condition of shear thinning behavior of the fluid is necessary for it. Flow enhancement is predicted using rheological data for blood since this fluid naturally flows under a pulsatile pressure gradient. The flow enhancement equation is found to have a similar form as the equation of the Rabinowitsch formalism in fully developed Poiseuille flow. This simplified technique will help in saving machine time for numerical predictions in computational blood flow simulations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.