Hemorrhage is the major hindrance over the wound healing, which triggers microbial infections and might provoke traumatic death. Herein, new hemostatic and antibacterial PVA/Kaolin composite sponges were crosslinked using a freeze-thawing approach and boosted by penicillin–streptomycin (Pen-Strep). Physicochemical characteristics of developed membranes were analyzed adopting Fourier transformed infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), a thermal gravimetric analyzer (TGA), and differential scanning calorimetry (DSC). Furthermore, the impacts of kaolin concentrations on porosity, swelling behavior, gel fraction, and degradation of the membranes were investigated. SEM analyses revealed a spongy-like structure of hydrogels associated with high dispersion of kaolin inside PVA matrix. The thermal characteristics of PVA/Kaolin were significantly ameliorated compared to the prime PVA. Moreover, the results exhibited significant variations of swelling performance, surface roughness and pore capacity due to the alterations of kaolin contents. Besides, the adhesive strength ability was manifestly enhanced for PVA-K0.1 sponge. Biomedical evaluations including antibacterial activity, blood clotting index and thrombogenicity of the membranes were studied. The contact of PVA/Kaolin to blood revealed notable augmentation in blood clotting. Furthermore, the incorporation of kaolin into PVA presented mild diminution in antibacterial activities. Moreover, PVA/Kaolin composites illustrated no cellular toxicity towards fibroblast cells. These remarkable features substantiate that the PVA-K0.1 sponge could be applied as a multifunctional wound dressing.
The predominant impediments to cutaneous wound regeneration are hemorrhage and bacterial infections that lead to extensive inflammation with lethal impact. We thus developed a series of composite sponges based on polyvinyl alcohol (PVA) inspired by marjoram essential oil and kaolin (PVA/marjoram/kaolin), adopting a freeze–thaw method to treat irregular wounds by thwarting lethal bleeding and microbial infections. Microstructure analyses manifested three-dimensional interconnected porous structures for PVA/marjoram/kaolin. Additionally, upon increasing marjoram and kaolin concentrations, the pore diameters of the sponges significantly increased, recording a maximum of 34 ± 5.8 µm for PVA-M0.5-K0.1. Moreover, the porosity and degradation properties of PVA/marjoram/kaolin sponges were markedly enhanced compared with the PVA sponge with high swelling capacity. Furthermore, the PVA/marjoram/kaolin sponges exerted exceptional antibacterial performance against Escherichia coli and Bacillus cereus, along with remarkable antioxidant properties. Moreover, PVA/marjoram/kaolin sponges demonstrated significant thrombogenicity, developing high thrombus mass and hemocompatibility, in addition to their remarkable safety toward fibroblast cells. Notably, this is the first study to our knowledge investigating the effectiveness of marjoram in a polymeric carrier for prospective functioning as a wound dressing. Collectively, the findings suggest the prospective usage of the PVA-M0.5-K0.1 sponge in wound healing for hemorrhage and bacterial infection control.
Polyvinyl alcohol (PVA) is a safe and biodegradable polymer. Given the unique physical and chemical properties of PVA, we physically cross-linked PVA with kaolin (K) and cedar essential oil (Ced) using the freeze-thawing approach to fabricate PVA/Ced/K sponge hydrogels as hemostatic, antibacterial, and antioxidant wound healing materials. The physicochemical characteristics of PVA/Ced/K hydrogels, including water swelling profiles and gel fractions, were surveyed. Additionally, the functional groups of hydrogels were explored by Fourier transform infrared spectroscopy (FTIR), while their microstructures were studied using scanning electron microscopy (SEM). Furthermore, the thermal features of the hydrogels were probed by thermal gravimetric analysis (TGA) and differential scanning calorimetry (DSC). Evidently, alterations in cedar concentrations resulted in significant variations in size, water uptake profiles, and hydrolytic degradation of the hydrogels. The incorporation of cedar into the PVA/K endowed the hydrogels with significantly improved antibacterial competency against Bacillus cereus (B. cereus) and Escherichia coli (E. coli). Moreover, PVA/Ced/K exhibited high scavenging capacities toward ABTS•+ and DPPH free radicals. Beyond that, PVA/Ced/K hydrogels demonstrated hemocompatibility and fast blood clotting performance in addition to biocompatibility toward fibroblasts. These findings accentuate the prospective implementation of PVA/Ced/K composite hydrogel as a wound dressing.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.