HighlightsThis is the first document concerning human case of bacteremia due to Streptococcus suis serotype 5 in Japan.We confirmed the novel sequence type 752 of this isolate.Both sly (encoding the hemolysin suilysin) and mrp (encoding a muramidase-released protein) were detected with no amplification of epf (encoding the extracellular factor), showing the virulence-associated gene profiling.This isolate had both tet(O) and erm(B) as the antimicrobial resistance genes.
Aimed at progress in MeV gamma-ray astronomy which has not yet been well-explored, Compton telescope missions with a variety of detector concepts have been proposed so far. One of the key techniques for these future missions is an event reconstruction algorithm that is able to determine the scattering orders of multiple Compton scattering events and to identify events in which gamma rays escape from the detectors before they deposit all of their energies. We propose a new algorithm that can identify whether the gamma rays escape from the detectors or not, in addition to the scattering order determination. This algorithm also corrects incoming gamma-ray energies for escape events. The developed algorithm is based on the maximum likelihood method, and we present a general formalism of likelihood functions describing physical interactions inside the detector. We also introduce several approximations in the calculation of the likelihood functions for efficient computation. For validation, we have applied the algorithm to simulation data of a Compton telescope using a liquid argon time projection chamber, which is a new type of Compton telescope proposed for the GRAMS mission, and have confirmed that it works successfully for up to 8-hit events. The proposed algorithm can be used for next-generation MeV gamma-ray missions featured by large-volume detectors, e.g., GRAMS and AMEGO.
Gamma-Ray and AntiMatter Survey) is a next-generation proposed balloon/satellite mission that will be the first to target both MeV gamma-ray observations and antimatter-based indirect dark matter searches with a LArTPC (Liquid Argon Time Projection Chamber) detector. Astrophysical observations at MeV energies have been poorly explored and long-neglected. With a cost-effective, large-scale LArTPC, a single LDB (Long-Duration Balloon) flight could provide an order of magnitude improved sensitivity compared to previous experiments. We can uniquely measure gamma rays from annihilating dark matter and evaporating primordial black holes. Additionally, GRAMS can extensively explore dark matter parameter space via antimatter measurements. In particular, low-energy antideuterons can be background-free dark matter signatures. We could deeply investigate the parameter space and validate the potential dark matter signatures suggested by the Fermi gamma-ray observations and AMS-02 antiparticle measurements.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.