Faulty field sensors cause unreliability in the observed data that needed to calibrate and assess hydrology models. However, it is illogical to ignore abnormal or missing values if there are limited data available. This study addressed this problem by applying data imputation to replace incorrect values and recover missing streamflow information in the dataset of the Samho gauging station at Taehwa River (TR), Korea from 2004 to 2006. Soil and Water Assessment Tool (SWAT) and two machine learning techniques, Artificial Neural Network (ANN) and Self Organizing Map (SOM), were employed to estimate streamflow using reasonable flow datasets of Samho station from 2004 to 2009. The machine learning models were generally better at capturing high flows, while SWAT was better at simulating low flows.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.