Groundwater contamination becomes a great concern in many countries. One of the most important pollutants is hydrocarbons. Sources of Hydrocarbons pollutants in Gazacan be a result of accidental spills of petroleum products on the surface and uncontrolled disposal of wastewater. One of the common technologies for groundwater aquifer remediation from hydrocarbons is known as air sparging. In this study, a120 cm×100 cm×80 cmlaboratory scale aquifer model was implemented in order to investigate the effectiveness of air sparging technology in removal of petroleum products from contaminated site. Four pilot scale wells were installed at different depths and different spatial distribution. The central well was used for injecting air and the surrounding three wells were used for monitoring. The contaminated water and soil were tested for total organic carbon, lead, dissolved Oxygen and pH; one time before the start of treatment and four times through the treatment process. Total organic carbon in water and soil before air injection were 980 ppm and 0.08775 ppm, respectively. After air injection for three weeks (six hours daily) at flow rate range from 15 to20 L/min and at pressure range from 300 to 400 kPa, the concentration of pollutant was decreased to 4.0 ppm and 0.0 ppm in water and soil, respectively. Based on the results, it was clearly demonstrated that air sparging is a simple, effective and affordable technology that can be applied forGazaaquifer remediation in case of gasoline spill accidents.
The Eastern Mediterranean region of the Middle East and North Africa (MENA) is experiencing patterns of major drought due to the effects of rising temperatures and falling precipitation levels. The multiscale drought evaluation Standardized Precipitation Evapotranspiration Index (SPEI) reveals evolving and severe drought from North Africa and the Sinai desert toward the Middle East. While there has been a period without drought between 1970 and 1990, the severity and frequency of drought increased considerably after 1990. Current drought conditions in the Eastern Mediterranean region of MENA is moderate to severe with a 60–100% likelihood of occurrence, according to time parameters. The Gaza Strip is especially vulnerable to the consequences of increasing drought because it is situated in the vicinity of the Sinai Desert; therefore, a downscaled study of drought in the region is essential to implement mitigation measures for the sustainable management and planning of coastal aquifer and agricultural activities in the Gaza Strip. Considerable availability of precipitation time series from various meteorological stations helped provide a local drought study for the Gaza Strip, in accordance with the Standardized Precipitation Index (SPI). The stochastic time-series model of (4,0,1) (5,1,1)12 shows a robust simulator for modeling and forecasting the future trend of precipitation at the nine meteorological stations. In terms of correlation accuracy, the model achieves a correlation (r) of approximately 93–97% in the calibration range and a correlation (r) of about 92–99% in the validation range. In terms of measuring the difference between the values, the root mean squared error (RMSE) of the model results shows that the RMSE was between 7–21 in the calibration range and 11–21 in the validation range. The model reveals a slightly stable trend in precipitation patterns at the northern meteorological stations of Beit Hanon, Beit Lahia, Shati, and Remal. However, declining precipitation tendency was recorded at the southern meteorological stations of Mughraka, Nussirat, Beir Al-Balah, Khanyounis, and Rafah. The SPI-based drought assessment implies that the precipitation annual threshold levels at SPI = 0 drop territorially from 474 mm in the north to about 250 mm in the south of the Gaza Strip. In this study, a representative 12-month local scale SPI12 at an annual precipitation threshold level of 370 mm was formulated to address the drought conditions in the Gaza Strip. Standing on the outputs of the local SPI12 scale might signify that the region of the Gaza Strip risks drought status with an incidence likelihood varying from 8% in the north to 100% in the south. Regular drought is prevalent in the northern governorates, but the hazards of extreme and severe drought are high in the southern areas with an incidence risk of about 83%. Sequentially, southern governorates of Rafah and Khanyounis experience chronic annual drought, while the return period of drought is reported to be every 9–12 years in the northern governorates of the Gaza Strip. The rain-fed years of 1998 and 2010 reported the worst periods of drought, while the period of 2016 showed a good droughtless water balance. Overall, the no-drought status might define the prospective conditions in the governorates of North Gaza, Gaza, and central Gaza over the next 20 years, while Rafah and Khanyounis are anticipated to be under normal to severe drought conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.