The CD11/CD18 family of glycoproteins has been identified as a mediator of a number of adhesive interactions crucial to inflammatory responses. Using a monoclonal antibody (MoAb) against CD18 (TS1/18), the role of these molecules in polymorphonuclear neutrophil (PMNL) adhesion to cultured primary human umbilical vein endothelial cells (HUVEC) was examined under venous flow conditions. Incubation of PMNL with TS1/18 (anti-CD18) did not inhibit PMNL adhesion to interleukin-1 (IL-1)- treated HUVEC at 2.0 dynes/cm2 (TS1/18-treated 305 +/- 58 PMNL/mm2 v 334 +/- 63 PMNL/mm2 on control). Furthermore, incubation of HUVEC with R6.5.D6, an MoAb against intercellular adhesion molecule-1 (ICAM-1) did not significantly inhibit PMNL adhesion to IL-1-treated HUVEC at 2.0 dynes/cm2 (P greater than .3). In contrast to the lack of inhibition of adhesion under conditions of flow, incubation of PMNL with TS1/18 reduced PMNL adherence in static adhesion assays. PMNL migration beneath HUVEC monolayers has been shown to be stimulated by 4-hour IL-1 treatment. TS1/18 and R6.5.D6 significantly inhibited migration of PMNL beneath IL-1-treated HUVEC monolayers under flow conditions by slightly more than 80% (P less than .005). In flow experiments with CD18- deficient PMNL, virtually no transendothelial migration was observed. The effect of FMLP (10(-8) mol/L) on PMNL adhesion to untreated HUVEC at wall shear stresses ranging from 0.25 to 2.0 dynes/cm2 was also investigated. FMLP had little effect on PMNL adherence at shear stresses above 0.5 dynes/cm2 (P greater than .45). In response to FMLP exposure at lower wall shear stresses, PMNL adherence to untreated HUVEC increased 6.9-fold at 0.5 dynes/cm2 (P less than .001). At 0.25 dynes/cm2, FMLP stimulation increased PMNL adherence to untreated HUVEC 6.5-fold compared with controls (P less than .005), and FMLP failed to make CD18-deficient PMNL more adherent. In experiments with PMNL pretreated with TS1/18 (anti-CD18), there was a 67% inhibition of FMLP- stimulated adhesion at 0.5 dynes/cm2 (P less than .025). The upper threshold of CD18-mediated PMNL adhesion appears to be between 0.5 and 1.0 dyne/cm2. Above these wall shear stresses, the initial attachment of PMNL to cultured endothelium was mediated almost exclusively by CD18- independent mechanisms. By simulating some of the flow parameters in the microcirculation with well-characterized shear forces, PMNL adhesion by CD18-independent and dependent mechanisms can be differentiated. These data also indicate that CD18 is an important mediator of transendothelial migration by PMNL, which have attached to the endothelium by a CD18-independent mechanism.
The effect of flow on the adhesion of polymorphonuclear leukocytes (PMNL) to vascular endothelium was investigated using a parallel plate chamber with a well-defined flow field. Washed PMNL were perfused over a monolayer of primary human umbilical vein endothelial cells (HUVEC) pretreated with formyl-methionyl-leucyl-phenylalanine (FMLP, 1 X 10(-7) mol/L) for five minutes. In other experiments HUVEC were pretreated with interleukin 1 (IL1,2 U/mL) for four hours. PMNL adhesion to stimulated and control HUVEC was measured over a physiologic range of wall shear stresses. PMNL adhesion to nylon-coated surface was also studied. At a wall shear stress of 0.98 dynes/cm2,283 +/- 37.3 PMNL/mm2 (mean +/- SEM) adhered to FMLP-treated HUVEC while 195 +/- 20.3 PMNL/mm2 adhered to control HUVEC. At 1.96 dynes/cm2, 68 +/- 14.1 PMNL/mm2 adhered to FMLP-treated HUVEC and 42 +/- 6.0 PMNL/mm2 adhered to control HUVEC. At 3.92 dynes/cm2, virtually no PMNL adherence was noted on either control or FMLP-treated HUVEC. On IL 1-treated HUVEC at 1.96 dynes/cm2, 371 +/- 25.8 PMNL/mm2 adhered while 28 +/- 2.9 PMNL/mm2 adhered to control HUVEC. PMNL adhesion to IL 1-treated and control HUVEC dropped to 10.2 +/- 3.8 and 6.8 +/- 3.5 PMNL/mm2, respectively, at 3.01 dynes/cm2. The effect of flow on PMNL adhesion appears to be an important factor in determining the outcome of the PMNL/HUVEC adhesive interaction under these experimental conditions.
The effect of flow on the adhesion of polymorphonuclear leukocytes (PMNL) to vascular endothelium was investigated using a parallel plate chamber with a well-defined flow field. Washed PMNL were perfused over a monolayer of primary human umbilical vein endothelial cells (HUVEC) pretreated with formyl-methionyl-leucyl-phenylalanine (FMLP, 1 X 10(-7) mol/L) for five minutes. In other experiments HUVEC were pretreated with interleukin 1 (IL1,2 U/mL) for four hours. PMNL adhesion to stimulated and control HUVEC was measured over a physiologic range of wall shear stresses. PMNL adhesion to nylon-coated surface was also studied. At a wall shear stress of 0.98 dynes/cm2,283 +/- 37.3 PMNL/mm2 (mean +/- SEM) adhered to FMLP-treated HUVEC while 195 +/- 20.3 PMNL/mm2 adhered to control HUVEC. At 1.96 dynes/cm2, 68 +/- 14.1 PMNL/mm2 adhered to FMLP-treated HUVEC and 42 +/- 6.0 PMNL/mm2 adhered to control HUVEC. At 3.92 dynes/cm2, virtually no PMNL adherence was noted on either control or FMLP-treated HUVEC. On IL 1-treated HUVEC at 1.96 dynes/cm2, 371 +/- 25.8 PMNL/mm2 adhered while 28 +/- 2.9 PMNL/mm2 adhered to control HUVEC. PMNL adhesion to IL 1-treated and control HUVEC dropped to 10.2 +/- 3.8 and 6.8 +/- 3.5 PMNL/mm2, respectively, at 3.01 dynes/cm2. The effect of flow on PMNL adhesion appears to be an important factor in determining the outcome of the PMNL/HUVEC adhesive interaction under these experimental conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.