This paper reports a plasma reactive oxygen species (ROS) method for decontamination of PPE (N95 respirators and gowns) using a surface DBD source to meet the increased need of PPE due to the COVID-19 pandemic. A system is presented consisting of a mobile trailer (35 m3) along with several Dielectric barrier discharge sources installed for generating a plasma ROS level to achieve viral decontamination. The plasma ROS treated respirators were evaluated at the CDC NPPTL, and additional PPE specimens and material functionality testing were performed at Texas A&M. The effects of decontamination on the performance of respirators were tested using a modified version of the NIOSH Standard Test Procedure TEB-APR-STP-0059 to determine particulate filtration efficiency. The treated Prestige Ameritech and BYD brand N95 respirators show filtration efficiencies greater than 95% and maintain their integrity. The overall mechanical and functionality tests for plasma ROS treated PPE show no significant variations.
A nanosecond pulsed non-equilibrium plasma reactor is used to crack hydrocarbons into hydrogen and lighter intermediates at atmospheric pressure and warm temperature. The effects of power, capacitance, breakdown voltage, pulsing frequency, energy per pulse, and carrier gas type are investigated for product generation. Multiple gaseous products including hydrogen and hydrocarbons are calculated and compared at different conditions. A statistical analysis is performed on hydrogen yield for different experimental conditions to determine the significance of the studied parameters. Comparable hydrogen yields are produced when using methane (4 to 22 g-H2/kWh) as a carrier gas as compared to argon (7 to 14 g-H2/kWh). Although, notably, the methane carrier is more selective to hydrogen and sensitive to other operating parameters, the argon is not. Statistical analysis shows that plasma power, capacitance, and energy per pulse appear to influence hydrogen yield while pulsing frequency and breakdown voltage do not. A higher yield of hydrogen is achieved with low plasma power and a low energy per pulse, with a low capacitance for both cases of pure CH4 and pure Ar. The results show that low plasma power based on a low energy per pulse of <10 mJ is preferable for hydrogen production in a batch reactor. This CO2-free hydrogen production method produces hydrogen from fossil fuels at less than USD 2/kg in electricity.
The impact of plasma processing technology as an electric conversion of fuels in the oil and gas industry is demonstrated with significant GHG emission reduction while producing fuels of high quality.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.