The antidiabetic, hypoglycemic and oral glucose tolerance test (OGTT) activities of zinc oxide nanoparticles (ZnONPs) were assessed in mice. ZnONPs were prepared by reacting Zn(NO3)2.6H2O and NaOH solution at 70°C with continuous stirring and then characterized by transmission electron microscopy (TEM) and scanning electron microscopy (SEM) techniques. Diabetes was induced by the intraperitoneal injection of streptozotocin (STZ) in mice, and then the blood glucose levels were determined by the glucose oxidase method. The experimental results revealed that ZnONPs suggestively (p<0.001) declined the blood glucose levels (39.79%), while these reductions were 38.78% for the cotreatment of ZnONPs and insulin, and 48.60% for insulin, respectively. In the hypoglycemic study, ZnONPs (8 and 14 mg/kg b.w) reduced approximately 25.13 and 29.15% of blood glucose levels, respectively. A similar reduction was found in the OGTT test, which is also a dose- and time-dependent manner. Overall, ZnONPs possess a potential antidiabetic activity, which could be validated by further mechanistic studies.
Breast cancer affects one in eight women in Bangladesh and is the most common cancer among women in South Asia next to skin cancer. NUDT5 are nucleotide-metabolizing enzymes (NUDIX hydrolases) linked with the ADP ribose and 8-oxo-guanine metabolism. It is known to be associated with the hormone dependent gene regulation and proliferation in breast cancer cells. It blocks progestin-dependent, PARderived nuclear ATP synthesis and subsequent chromatin remodeling, gene regulation and proliferation in this context. We describe the structure based binding features of a lead compound (7-[[5-(3, 4-dichlorophenyl)-1,3,4-oxadiazol-2-yl]methyl]-1,3-dimethyl-8piperazin-1ylpurine-2,6-dione-C20H20Cl2N8O3) with NUDT5 for further in vitro and in vivo validation. It is a promising inhibitor for blocking NUDT5 activity. Thus, structure based virtual screening is used to identify a potential therapeutic inhibitor for NUDT5.
Confluent monolayers of human umbilical vein endothelial cells (HUVECs) on a poly(2-methoxyethyl acrylate) (PMEA) antithrombogenic surface play a major role in mimicking the inner surface of native blood vessels. In this study, we extensively investigated the behavior of cell–polymer and cell–cell interactions by measuring adhesion strength using single-cell force spectroscopy. In addition, the attachment and migration of HUVECs on PMEA-analogous substrates were detected, and the migration rate was estimated. Moreover, the bilateral migration of HUVECs between two adjacent surfaces was observed. Furthermore, the outer surface of HUVEC was examined using frequency-modulation atomic force microscopy (FM-AFM). Hydration was found to be an indication of a healthy glycocalyx layer. The results were compared with the hydration states of individual PMEA-analogous polymers to understand the adhesion mechanism between the cells and substrates in the interface region. HUVECs could attach and spread on the PMEA surface with stronger adhesion strength than self-adhesion strength, and migration occurred over the surface of analogue polymers. We confirmed that platelets could not adhere to HUVEC monolayers cultured on the PMEA surface. FM-AFM images revealed a hydration layer on the HUVEC surfaces, indicating the presence of components of the glycocalyx layer in the presence of intermediate water. Our findings show that PMEA can mimic original blood vessels through an antithrombogenic HUVEC monolayer and is thus suitable for the construction of artificial small-diameter blood vessels.
Poly (2-methoxyethyl acrylate) (PMEA) is a US FDA-approved biocompatible polymer, although there is insufficient work on human umbilical vein endothelial cells (HUVECs) and platelet interaction analysis on PMEA-analogous polymers. In this study, we extensively investigated HUVEC–polymer and platelet–polymer interaction behavior by measuring the adhesion strength using single-cell force spectroscopy. Furthermore, the hydration layer of the polymer interface was observed using frequency-modulation atomic force microscopy. We found that endothelial cells can attach and spread on the PMEA surface with strong adhesion strength compared to other analogous polymers. We found that the hydration layers on the PMEA-analogous polymers were closely related to their weak platelet adhesion behavior. Based on our results, it can be concluded that PMEA is a promising candidate for the construction of artificial small-diameter blood vessels owing to the presence of IW and a hydration layer on the interface.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.