of nasal fluids, mucuses and stools, respectively. Results: All the isolated species of bacteria exhibited significant enhancement of the degree of MDR in pharmaceutical workers compared with non-pharmaceutical subjects. Workers with a longer working history had greater degree of antibiotic resistance and vice versa. It can be certainly considered that the exposure of pharmaceutical workers to antibiotic agents resulted in a high incidence of multidrug resistance. Conclusions: Effective steps should be taken to minimize inherent exposure of pharmaceutical workers to antibiotics during work to prevent antimicrobial drug resistance. Antimicrobial drug resistance is a great problem for the treatment of infectious diseases all over the world. Resistance is increasing not only in low-and middleincome countries but also in high-income countries due to many reasons including the misuse of antibiotics and movement of infectious people all over the world 1) . The use of poor quality, degraded, expired, counterfeit and adulterated drugs are also among the several prime reasons 2) . In the above cases, the amounts of drugs administered into the human body fail to achieve the minimum effective concentration (MEC) levels; therefore, bacteria can easily develop resistance against the drugs when the drug is readministered. In general, workers in the pharmaceutical industries are constantly exposed to various chemical substances, such as organic solvents, vapors, dusts Pharmaceutical workers involved with the production of antimicrobial drugs are exposed to various antimicrobial chemicals in different steps of manufacturing such as grinding, sieving, compression, granulation, mixing and filling. These exposures may lead to the development of multidrug resistance (MDR) in bacteria. Scientific reports on the occupational health hazard of pharmaceutical workers involved in manufacturing antibiotics are scarce. The present study aimed to compare the degree of bacterial resistance in pharmaceutical workers in Bangladesh to that of individuals not involved in the pharmaceutical field. Methods: Twenty male workers from five local pharmaceutical companies and twenty male subjects not involved in the pharmaceutical field (non-pharmaceutical subjects) were randomly selected. Nasal fluid, mucus/cough and stool specimens were collected from each subject and were cultured separately at 37°C for 24 hours to obtain bacterial growth. The cultured species were then identified, isolated and subjected to microbial sensitivity testing against 18 different antibiotics from eight different groups by the disk diffusion method. Staphylococcus spp., Pseudomonas spp. and Escherichia coli were identified and isolated from the culture
Background: The adaptive immune response is a crucial component of the protective immunity against SARS-CoV-2, generated after infection or vaccination. Methods: We studied antibody titers, neutralizing antibodies and cellular immune responses to four different COVID-19 vaccines, namely Pfizer-BioNTech, Moderna Spikevax, AstraZeneca and Sinopharm vaccines in the Bangladeshi population (n = 1780). Results: mRNA vaccines Moderna (14,655 ± 11.3) and Pfizer (13,772 ± 11.5) elicited significantly higher anti-Spike (S) antibody titers compared to the Adenovector vaccine AstraZeneca (2443 ± 12.8) and inactivated vaccine Sinopharm (1150 ± 11.2). SARS-CoV-2-specific neutralizing antibodies as well as IFN-γ-secreting lymphocytes were more abundant in Pfizer and Moderna vaccine recipients compared to AstraZeneca and Sinopharm vaccine recipients. Participants previously infected with SARS-CoV-2 exhibited higher post-vaccine immune responses (S-specific and neutralizing antibodies, IFN-γ-secreting cells) compared to uninfected participants. Memory B (BMEM), total CD8+T, CD4+ central memory (CD4+CM) and T-regulatory (TREG) cells were more numerous in AstraZeneca vaccine recipients compared to other vaccine recipients. Plasmablasts, B-regulatory (BREG) and CD4+ effector (CD4+EFF) cells were more numerous in mRNA vaccine recipients. Conclusions: mRNA vaccines generated a higher antibody response, while a differential cellular response was observed for different vaccine types, suggesting that both cellular and humoral responses are important in immune monitoring of different types of vaccines.
Background Seroprevalence studies have been carried out in many developed and developing countries to evaluate ongoing and past infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Data on this infection in marginalized populations in urban slums are limited, which may offer crucial information to update prevention and mitigation policies and strategies. We aimed to determine the seroprevalence of SARS-CoV-2 infection and factors associated with seropositivity in slum and non-slum communities in two large cities in Bangladesh. Methods A cross-sectional study was carried out among the target population in Dhaka and Chattogram cities between October 2020 and February 2021. Questionnaire-based data, anthropometric and blood pressure measurements and blood were obtained. SARS-CoV-2 serology was assessed by Roche Elecsys® Anti-SARS-CoV-2 immunoassay. Results Among the 3220 participants (2444 adults, ≥18 years; 776 children, 10–17 years), the overall weighted seroprevalence was 67.3% (95% confidence intervals (CI) = 65.2, 69.3) with 71.0% in slum (95% CI = 68.7, 72.2) and 62.2% in non-slum (95% CI = 58.5, 65.8). The weighted seroprevalence was 72.9% in Dhaka and 54.2% in Chattogram. Seroprevalence was positively associated with limited years of formal education (adjusted odds ratio [aOR] = 1.61; 95% CI = 1.43, 1.82), lower income (aOR = 1.23; 95% CI = 1.03, 1.46), overweight (aOR = 1.2835; 95% CI = 1.26, 1.97), diabetes (aOR = 1.67; 95% CI = 1.21, 2.32) and heart disease (aOR = 1.38; 95% CI = 1.03, 1.86). Contrarily, negative associations were found between seropositivity and regular wearing of masks and washing hands, and prior BCG vaccination. About 63% of the population had asymptomatic infection; only 33% slum and 49% non-slum population showed symptomatic infection. Conclusion The estimated seroprevalence of SARS-CoV-2 was more prominent in impoverished informal settlements than in the adjacent middle-income non-slum areas. Additional factors associated with seropositivity included limited education, low income, overweight and pre-existing chronic conditions. Behavioral factors such as regular wearing of masks and washing hands were associated with lower probability of seropositivity.
Background Each year, an estimated 15 million babies are born preterm. Micronutrient deficiencies, including vitamin D deficiency (VDD), are common in many low- and middle-income countries (LMICs), and these conditions are often associated with adverse pregnancy outcomes. Bangladesh experiences a high prevalence of VDD. The country also has a high preterm birth (PTB) rate. Using data from a population-based pregnancy cohort, we estimated the burden of VDD during pregnancy and its association with PTB. Methods Pregnant women (N = 3,000) were enrolled after ultrasound confirmation of gestational age at 8–19 weeks of gestation. Trained health workers prospectively collected phenotypic and epidemiological data at scheduled home visits. Trained phlebotomists collected maternal blood samples at enrollment and 24 -28 weeks of gestation. Aliquots of serum were stored at -800 C. We conducted a nested case–control study with all PTB (n = 262) and a random sample of term births (n = 668). The outcome, PTB, was defined as live births < 37 weeks of gestation, based on ultrasound. The main exposure was vitamin D concentrations of 24–28 weeks maternal blood samples. The analysis was adjusted for other PTB risk factors. Women were categorized as VDD (lowest quartile of 25(OH)D; < = 30.25 nmol/L) or not deficient (upper-three quartiles of 25(OH)D; > 30.25 nmol/L). We used logistic regression to determine the association of VDD with PTB, adjusting for potential confounders. Results The median and interquartile range of serum 25(OH)D was 38.0 nmol/L; 30.18 to 48.52 (nmol/L). After adjusting for co-variates, VDD was significantly associated with PTB [adjusted odds ratio (aOR) = 1.53, 95% confidence interval (CI) = 1.10 – 2.12]. The risk of PTB was also higher among women who were shorter (aOR = 1.81, 95% CI: 1.27–2.57), primiparous (aOR = 1.55, 95% CI = 1.12 – 2.12), passive smokers (aOR = 1.60, 95% CI = 1.09 – 2.34), and those who received iron supplementation during pregnancy (aOR = 1.66, 95% CI: 1.17, 2.37). Conclusion VDD is common in Bangladeshi pregnant women and is associated with an increased risk of PTB.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations –citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.