Most humans are in contact with animals in a way or another. A zoonotic disease is a disease or infection that can be transmitted naturally from vertebrate animals to humans or from humans to vertebrate animals. More than 60% of human pathogens are zoonotic in origin. This includes a wide variety of bacteria, viruses, fungi, protozoa, parasites, and other pathogens. Factors such as climate change, urbanization, animal migration and trade, travel and tourism, vector biology, anthropogenic factors, and natural factors have greatly influenced the emergence, re-emergence, distribution, and patterns of zoonoses. As time goes on, there are more emerging and re-emerging zoonotic diseases. In this review, we reviewed the etiology of major zoonotic diseases, their impact on human health, and control measures for better management. We also highlighted COVID-19, a newly emerging zoonotic disease of likely bat origin that has affected millions of humans along with devastating global consequences. The implementation of One Health measures is highly recommended for the effective prevention and control of possible zoonosis.
Diseases caused by Escherichia coli (E. coli) and Salmonella spp. can negatively impact turkey farming. The aim of this study was to isolate and characterize multidrug-resistant (MDR) E. coli and Salmonella spp. in healthy and diseased turkeys. A total of 30 fecal samples from healthy turkeys and 25 intestinal samples from diseased turkeys that died of enteritis were collected. Bacterial isolation and identification were based on biochemical properties and polymerase chain reaction (PCR). Antibiogram profiles were determined by disk diffusion. The tetracycline-resistance gene tetA was detected by PCR. All samples were positive for E. coli. Only 11 samples (11/30; 36.67%) were positive for Salmonella spp. from healthy turkeys, whereas 16 (16/25; 64%) samples were positive for Salmonella spp. from diseased turkeys. E. coli isolated from diseased turkeys showed higher resistance to levofloxacin, gentamicin, chloramphenicol, ciprofloxacin, streptomycin, and tetracycline. Salmonella spp. isolated from healthy turkeys exhibited higher resistance to gentamicin, chloramphenicol, ciprofloxacin, streptomycin, imipenem, and meropenem. All E. coli and Salmonella spp. from both healthy and diseased turkeys were resistant to erythromycin. Salmonella spp. from both healthy and diseased turkeys were resistant to tetracycline. Multidrug resistance was observed in both E. coli and Salmonella spp. from diseased turkeys. Finally, the tetA gene was detected in 93.1% of the E. coli isolates and in 92.59% of the Salmonella spp. isolates. To the best of our knowledge, this is the first study to isolate and characterize tetA-gene-containing MDR E. coli and Salmonella spp. from healthy and diseased turkeys in Bangladesh. Both microorganisms are of zoonotic significance and represent a significant public health challenge.
Poultry farming is a significant source of revenue generation for small farmers in developing countries. It plays a vital role in fulfilling the daily protein requirements of humans through meat and eggs consumption. The recently emerged pandemic Coronavirus Disease-19 (COVID-19) impacts the poultry production sector. Although the whole world is affected, these impacts may be more severe in developing countries due to their dependency on exporting necessary supplies such as feed, vaccines, drugs, and utensils. In this review, we have discussed poultry production in developing countries under the COVID-19 crisis and measures to regain the loss in the poultry industries. Generally, due to the lockdown, trade limitations have negatively impacted poultry industries, which might exacerbate global poverty. Coordinated activities have to be taken at the private and government levels to arrange soft loans so that these farms can restore their production and marketing to normal levels. In addition, here, we have focused on the supply of farm input, feed, other raw materials, management system, improved breeding efficiency, veterinary services, and marketing of egg and meat, which have to be ensured to secure a sustainable poultry production chain.
Antimicrobial resistance (AMR) is a significant public health issue in Bangladesh like many other developing countries where data on resistance trends are scarce. Moreover, the existence of multidrug-resistant (MDR) Escherichia coli exerts an ominous effect on the poultry sector. Therefore, the current systematic review, following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines, was conducted to find out the AMR scenarios in E. coli isolates sourced from poultry and poultry environments in Bangladesh between 2010 and 2021. Following the PRISMA guidelines, a total of 17 published scientific articles were selected for this systematic review. This review revealed that 18 out of 64 districts in Bangladesh reported E. coli in poultry, having a higher prevalence (combined prevalence: 69.3%, 95% confidence interval, CI: 67.3-71%). Moreover, the prevalence ranged from 24.3% to 100%. This review found that E. coli isolates showed resistance to 14 antimicrobial classes and 45 different antimicrobial agents, including the last-line (reserve group) antibiotics and banned antimicrobial categories for the treatment of infections in agricultural animals. Phenotypic resistance of E. coli against penicillins and beta-lactamase inhibitors (20.2%-100%), cephalosporins (1.9%-100%), fluoroquinolones (5.98%-100%), aminoglycosides (6%-100%), tetracyclines (17.7%-100%), carbapenems (13.6%-72.7%), macrolides (11.8%-100%), polymyxins (7.9%-100%), phenicols (20%-97.2%), sulfa drugs (44.7%-100%), cephamycins (21.4%-48.8%), nitrofurans (21.4%-63.2%), monobactams (1.2%), and glycylcyclines (2.3%) was recorded in the last decades in Bangladesh. Also, 14 articles reported MDR E. coli in poultry, including a 100% MDR in nine articles and a 92.7% (95% CI: 91.2-94%) combined percentage of MDR E. coli isolates. Twenty-four different AMR genes encoding resistance to beta-lactams (blaTEM, blaCTX-M-1, blaCTX-M-2, blaCTX-M-9, blaOXA-1, blaOXA-47, blaSHV, and CITM), colistin (mcr1 and mcr3), fluoroquinolones (qnrB and qnrS), tetracyclines (tetA, tetB, and tetC), sulfonamides (sulI and sulII), trimethoprim (dfrA1), aminoglycosides (rmtB), streptomycin (aadA1), gentamicin (aac-3-IV), erythromycin (ereA), and chloramphenicol (catA1 and cmlA) were detected in E. coli isolates. The presence of MDR E. coli and their corresponding resistance genes in poultry and poultry environments is an alarming issue for all health communities in Bangladesh. We suggest a regular antimicrobial surveillance program with a strong One Health approach to lessen the hazardous effects of AMR E. coli in poultry industries in Bangladesh.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.