The present study was carried out in the northeastern part of Bangladesh to investigate organochlorine pesticide (OCP) residues in and microbiological quality of dried barb (Puntius sophore). Samples were collected from both producers and retailers from December 2016 to April 2017. A control sample was also prepared in the laboratory with the same raw fish used by the producers to compare the results. Gas chromatography with electron capture detector (GC-ECD) was used to detect and quantify OCP residues. Six samples out of 27 (about 22%) were found to be contaminated with OCP residues. Among these six adulterated samples, four were from retailers and two from producers. Only aldrin was detected in four samples, and in the other two samples both aldrin + dieldrin and aldrin + endrin were detected. Aldrin was found in quantities between 0.332 and 0.967 ppm, dieldrin 0.762 ppm, and endrin 0.828 ppm. All these values were much higher than the maximum residual limit (MRL) of 0.1 ppm. Total plate count (TPC) of producer samples ranged from 5.3 ± 0.02 log cfu g−1 to 5.4 ± 0.03 log cfu g−1 and 6.2 ± 0.02 log cfu g−1 to 6.4 ± 0.02 log cfu g−1 for retailer samples and 5.0 ± 0.03 log cfu g−1 to 5.2 ± 0.04 log cfu g−1 for control samples. Fungal count ranged from 3.2 ± 0.04 log cfu g−1 to 3.5 ± 0.04 log cfu g−1, 3.4 ± 0.04 log cfu g−1 to 3.6 ± 0.03 log cfu g−1, and 2.2 ± 0.05 log cfu g−1 to 2.5 ± 0.03 log cfu g−1 for producer, retailer, and control samples, respectively. All the producer and retailer samples and one-third of the control samples were found to be contaminated with Escherichia coli, whereas Salmonella spp. were detected in amounts of 13.3% in producer samples and 20% in retailer samples and none in the control. In case of Vibrio spp., maximum count was found in retailer samples (13.3%), whereas producer and control samples showed none. The findings of the present study show that the presence of pesticides and poor microbiological quality of dried barb are alarming for consumers in Bangladesh and might cause prolonged disease and impending longstanding risk to human health.
Ligand-protein binding is responsible for the vast majority of bio-molecular functions. Most experimental techniques examine the most populated ligand-bound state. The determination of less populated, intermediate, and transient bound states is experimentally challenging. However, hidden bound states are also important because these can strongly influence ligand binding and unbinding processes. Here, we explored the use of a classical optical spectroscopic technique, red-edge excitation shift spectroscopy (REES) to determine the number, population, and energetics associated with ligand-bound states in protein–ligand complexes. We describe a statistical mechanical model of a two-level fluorescent ligand located amongst a finite number of discrete protein microstates. We relate the progressive emission red shift with red-edge excitation to thermodynamic parameters underlying the protein–ligand free energy landscape and to photo-physical parameters relating to the fluorescent ligand. We applied the theoretical model to published red-edge excitation shift data from small molecule inhibitor–kinase complexes. The derived thermodynamic parameters allowed dissection of the energetic contribution of intermediate bound states to inhibitor–kinase interactions.
At present, about one-third of the total protein targets in the pharmaceutical research sector are kinase-based. While kinases have been attractive targets to combat many diseases, including cancer, selective kinase inhibition has been challenging, because of the high degree of structural homology in the active site where many kinase inhibitors bind. Despite efficacy as cancer drugs, kinase inhibitors can exhibit limited target specificity and rationalizing their target profiles in the context of precise molecular mechanisms or rearrangements is a major challenge for the field. Spectroscopic approaches such as infrared, Raman, NMR and fluorescence have the potential to provide significant insights into drug-target and drug-non-target interactions because of sensitivity to molecular environment. This review places a spotlight on the significance of fluorescence for extracting information related to structural properties, discovery of hidden conformers in solution and in target-bound state, binding properties (e.g., location of binding sites, hydrogen-bonding, hydrophobicity), kinetics as well as dynamics of kinase inhibitors. It is concluded that the information gleaned from an understanding of the intrinsic fluorescence from these classes of drugs may aid in the development of future drugs with improved side-effects and less disease resistance.
Dacomitinib (PF-00299804) was recently approved by the Food and Drug Administration (FDA) as a tyrosine kinase inhibitor (TKI). Unfortunately, side effects and disease resistance eventually result from its use. Off-target effects in some kinase inhibitors have arisen from drug conformational plasticity; however, the conformational states of Dacomitinib in solution are presently unknown. To fill this gap, we have used computational chemistry to explore optimized molecular geometry, properties, and ultraviolet-visible (UV-Vis) absorption spectra of Dacomitinib in dimethyl sulfoxide (DMSO) solution. Potential energy scans led to the discovery of two planar and two twisted conformers of Dacomitinib. The simulated UV-Vis spectral signatures of the planar conformers reproduced the two experimental spectral bands at 275 and 343 nm in solution. It was further discovered that Dacomitinib forms conformers through its three flexible linkers of two C-NH-C bridges, which control the orientations of the 3-chloro-4-fluoroaniline ring (Ring C) and the quinazoline ring (Rings A and B) and the 4-piperidin-1-yl-buten-2-nal side chain, and one CO -C local bridge which controls the methoxy group locally. When in isolation, these flexible linkers form close hexagon and pentagon loops through strong intramolecular hydrogen bonding so that the "planar" conformers Daco-P1 and Daco-P2 are more stable in isolation. Such flexibility of the ligand and its ability to dock and bind with protein also depend on their interaction with the environment, in addition to their energy and spectra in isolation. However, an accurate quantum mechanical study on drug/ligand conformers in isolation provides necessary reference information for the ability to form a complex with proteins.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.