Incremental sheet forming (ISF) requires no or partial dies for sheet metal fabrication and is widely used for small batch production. In this process, necking is either suppressed or delayed due to the localized nature of tool–sheet contact; hence, more strains than conventional stamping and deep drawing are obtained. In the present study, two variations of ISF, namely cold ISF (CISF) and warm ISF (WISF), are compared. First, FEA modeling is carried out on ABAQUS to reach the forming forces involved in the process. It is found that WISF reduces the forming forces. The temperature for WISF is maintained at 180 °C. Following the simulation analysis, tests are carried out. The forming force in WISF is 55.77% less than that in CISF. The part fabricated by CISF is slightly more substantial than that by WISF; however, more forming depth can be achieved by WISF. There is a more uniform thickness distribution in the case of CISF than in WISF. However, the surface quality of the CISF product is inferior to that of WISF. It is observed that there is reduced forming force, increased formability, and better strain distribution in WISF compared to CISF. However, post-processing heat treatment and surface polishing of the formed parts is required to restore their mechanical properties.
In order to achieve crack free elliptical shape under controlled conditions, an experimental set-up was designed and fabricated. This setup consists of three hydraulic cylinders, an intensifier, a hydraulic power pack, storage tanks, forming die, and all parts are controlled by a Programmable Logic Controller (PLC) system. The elliptical samples can be achieved through proper control of internal pressure and axial force with proper sealing. Experimental work has been carried out with different magnitudes of internal pressure and constrained conditions of axial force. Initially die of elliptical shape has been designed and modeled in Abaqus to successfully achieve the particular shape of the Al6061T4 tube under different internal pressure. The fabricated tube hydroforming machine set-up is highly effective for forming 0.5 mm-2 mm thick Al6061T4 alloy tube samples. The Experimental test has been carried out at 12.7 mm outer diameter, 175 mm length and 0.5 mm thick Al6061T4 samples. Bulge height parameters measured at different points of regular distance gap on the axial direction of the tube length and corner radius found at different pressures range of the samples are plotted under different internal pressures. Samples having an 18.7 mm major elliptical bulge were achieved during the experiment. The experimental data was validated by simulation results.
Incremental sheet forming (ISF) is an emerging technology that has shown great potential in forming customized three-dimensional (3D) parts without the use of product-specific dies. The forming force is reduced in ISF due to the localized nature of deformation and successive forming. Forming force plays an important role in modeling the process accurately, so it needs to be evaluated accurately. Some attempts have been made earlier to calculate the forming force; however, they are mostly limited to empirical formulae for evaluating the average forming force and its different components. The current work presents a mathematical model for force prediction during ISF in a 3D polar coordinate system. The model can be used to predict forces for axis-symmetric cones of different wall angles and also for incremental hole flanging. Axial force component, resultant force in the r-θ plane, and total force have been calculated using the developed mathematical model appearing at different forming depths. The cone with the same geometrical parameters and experimental conditions was modeled and simulated on ABAQUS, and finally, experiments were carried out using a six-axis industrial robot. The mathematical model can be used to calculate forces for any wall angle, but for comparison purposes, a 45° wall angle cone has been used for analytical, numerical, and experimental validation. The total force calculated from the mathematical model had a very high level of accuracy with the force measured experimentally, and the maximum error was 4.25%. The result obtained from the FEA model also had a good level of accuracy for calculating total force, and the maximum error was 4.89%.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.