Abstract:The article is focused on analyzing the effect of functionalization and reactive processing on the morphological, thermal, rheological and mechanical properties of composites of isotactic polypropylene (PP), polystyrene (PS), poly(ethylene-vinyl acetate) (EVA), with cellulose fibers, hemp or oat as natural fillers. Both polymers and fibers were modified with bi-functional monomers (glycidyl methacrylate, GMA; maleic anhydride, MA) capable of facilitating chemical reactions between the components during melt mixing. Polyolefin copolymers containing reactive groups (PP-g-GMA, SEBS-g-MA, PS-co-MA, etc.) were used as compatibilizers. Optical and SEM microscopy, FTIR, RX, DSC, TGA, DMTA, rheological and mechanical tests were employed for the composites characterization. The properties of binary and ternary systems have been analyzed as a function of both fiber and compatibilizer content. All compatibilized systems showed enhanced fiber dispersion and interfacial adhesion. The phase behavior and the thermal stability of the composites were affected by the chemical modification of the fibers. Marked changes in the overall crystallization processes and crystal morphology of PP composites were observed owing to the nucleating effect of the fibers. The tensile mechanical behavior of the compatibilized composites generally resulted in a higher stiffness, depending on the fiber amount and the structure and concentration of compatibilizer.
OPEN ACCESSPolymers 2010, 2 555
A comparative study of the preparation and properties of composites of PCL with cellulose microfibres (CFs) containing butanoic‐acid‐modified cellulose (CB) or PCL grafted with maleic anhydride/glycidyl methacrylate as compatibilizers, is reported. The composites are obtained by melt mixing and analyzed using SEM, DSC, TGA, XRD, FT‐IR, NMR and tensile tests. An improved interfacial adhesion is observed in all compatibilized composites, as compared to PCL/CF. The crystallization behavior and crystallinity of PCL is largely affected by CF and CB content. Composites with PCL‐g‐MAGMA display higher values of tensile modulus, tensile strength and elongation at break. magnified image
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.