COVID-19 pandemic caused by novel coronavirus is continuously spreading until now all over the world. The impact of COVID-19 has been fallen on almost all sectors of development. The healthcare system is going through a crisis. Many precautionary measures have been taken to reduce the spread of this disease where wearing a mask is one of them. In this paper, we propose a system that restrict the growth of COVID-19 by finding out people who are not wearing any facial mask in a smart city network where all the public places are monitored with Closed-Circuit Television (CCTV) cameras. While a person without a mask is detected, the corresponding authority is informed through the city network. A deep learning architecture is trained on a dataset that consists of images of people with and without masks collected from various sources. The trained architecture achieved 98.7% accuracy on distinguishing people with and without a facial mask for previously unseen test data. It is hoped that our study would be a useful tool to reduce the spread of this communicable disease for many countries in the world.
Novel coronavirus has become a global problem in recent times due to the rapid spread of this disease. Almost all the countries of the world have been affected by this pandemic that made a major consequence on the medical system and healthcare facilities. The healthcare system is going through a critical time because of the COVID-19 pandemic. Modern technologies such as deep learning, machine learning, and data science are contributing to fight COVID-19. The paper aims to highlight the role of machine learning approaches in this pandemic situation. We searched for the latest literature regarding machine learning approaches for COVID-19 from various sources like IEEE Xplore, PubMed, Google Scholar, Research Gate, and Scopus. Then, we analyzed this literature and described them throughout the study. In this study, we noticed four different applications of machine learning methods to combat COVID-19. These applications are trying to contribute in various aspects like helping physicians to make confident decisions, policymakers to take fruitful decisions, and identifying potentially infected people. The major challenges of existing systems with possible future trends are outlined in this paper. The researchers are coming with various technologies using machine learning techniques to face the COVID-19 pandemic. These techniques are serving the healthcare system in a great deal. We recommend that machine learning can be a useful tool for proper analyzing, screening, tracking, forecasting, and predicting the characteristics and trends of COVID-19.
In December 2019, the Novel Coronavirus became a global epidemic. Because of COVID-19, all ongoing plans had been postponed. Lockdowns were imposed in areas where there was an excessive number of patients. Constantly locking down areas had a significant negative influence on the economy, particularly on developing and underdeveloped countries. But the majority of countries were locking down their areas without making any assumptions where some were successful and some were failures. In this situation, this paper presents a novel approach for determining which parts of a country should be immediately placed under lockdown during any pandemic situation while considering the lockdown history at the time of COVID-19. This work makes use of a self-established dataset containing data from several countries of the world and uses the successful presence of lockdown in that area as the target attribute for machine learning algorithms to determine the areas to keep under lockdown in the future. Here, the Random Forest algorithm has provided the highest accuracy of 92.387% indicating that this model can identify the areas with an impressive level of accuracy to retain under lockdown.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.