COVID-19 pandemic caused by novel coronavirus is continuously spreading until now all over the world. The impact of COVID-19 has been fallen on almost all sectors of development. The healthcare system is going through a crisis. Many precautionary measures have been taken to reduce the spread of this disease where wearing a mask is one of them. In this paper, we propose a system that restrict the growth of COVID-19 by finding out people who are not wearing any facial mask in a smart city network where all the public places are monitored with Closed-Circuit Television (CCTV) cameras. While a person without a mask is detected, the corresponding authority is informed through the city network. A deep learning architecture is trained on a dataset that consists of images of people with and without masks collected from various sources. The trained architecture achieved 98.7% accuracy on distinguishing people with and without a facial mask for previously unseen test data. It is hoped that our study would be a useful tool to reduce the spread of this communicable disease for many countries in the world.
To assist the visually impaired people to travel independently without external aid and monitoring real-time location information of these individuals, a wearable electronic device is presented in this paper. The system is able to detect the obstacles in front of the user, humps on the ground, moving objects. In addition, the system detects the sudden fall and informs the user's guardian. The system is comprised of ultrasonic sensors, a PIR motion sensor, an accelerometer, a smartphone application, a microcontroller, and a data transmission device. The microcontroller transmits the data to the user's smartphone via Bluetooth module. The smartphone application generates audible instructions to navigate the user properly. The application also updates the current location of the user to keep track and notifies the guardians when the user falls down or in distress. The developed system obtained an accuracy of about 98.34% when the obstacle is 50 cm away from the user. The system is proved to be very effective and efficient for users to navigate using precise speech instructions. Overall, the developed system will make the visually impaired people and their guardian's feel much safer and confident.
Novel coronavirus has become a global problem in recent times due to the rapid spread of this disease. Almost all the countries of the world have been affected by this pandemic that made a major consequence on the medical system and healthcare facilities. The healthcare system is going through a critical time because of the COVID-19 pandemic. Modern technologies such as deep learning, machine learning, and data science are contributing to fight COVID-19. The paper aims to highlight the role of machine learning approaches in this pandemic situation. We searched for the latest literature regarding machine learning approaches for COVID-19 from various sources like IEEE Xplore, PubMed, Google Scholar, Research Gate, and Scopus. Then, we analyzed this literature and described them throughout the study. In this study, we noticed four different applications of machine learning methods to combat COVID-19. These applications are trying to contribute in various aspects like helping physicians to make confident decisions, policymakers to take fruitful decisions, and identifying potentially infected people. The major challenges of existing systems with possible future trends are outlined in this paper. The researchers are coming with various technologies using machine learning techniques to face the COVID-19 pandemic. These techniques are serving the healthcare system in a great deal. We recommend that machine learning can be a useful tool for proper analyzing, screening, tracking, forecasting, and predicting the characteristics and trends of COVID-19.
Coronavirus disease 2019 in short COVID-19 is a contagious disease caused by coronavirus SARS-CoV-2, which has caused a global pandemic and still infecting millions around the globe. COVID-19 has made an enormous impact on everybody’s day-to-day life. One of the main strengths of COVID-19 is its extraordinary infectious capability. Early detection systems can thus play a big role in curbing the exponential growth of COVID-19. Some medical radiography techniques, such as chest X-rays and chest CT scans, are used for fast and reliable detection of coronavirus-induced pneumonia. In this paper, we propose a histogram of oriented gradients and deep convolutional network-based model that can find out the specific abnormality in frontal chest X-ray images and effectively classify the data into COVID-19 positive, pneumonia positive, and normal classes. The proposed system performed effectively in terms of various performance measures and proved capable as an effective early detection system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.