Urbanization is closely associated with land use land cover (LULC) changes that correspond to land surface temperature (LST) variation and urban heat island (UHI) intensity. Major districts of Bangladesh have a large population base and commonly lack the resources to manage fast urbanization effects, so any rise in urban temperature influences the population both directly and indirectly. However, little is known about the impact of rapid urbanization on UHI intensity variations during the winter dry period in the major districts of Bangladesh. To this end, we aim to quantify spatiotemporal associations of UHI intensity during the winter period between 2000 and 2019 using remote-sensing and geo-spatial tools. Landsat-8 and Landsat-5 imageries of these major districts during the dry winter period from 2000 to 2020 were used for this purpose, with overall precision varying from 81% to 93%. The results of LULC classification and LST estimation showed the existence of multiple UHIs in all major districts, which showed upward trends, except for the Rajshahi and Rangpur districts. A substantial increase in urban expansion was observed in Barisal > 32%, Mymensingh > 18%, Dhaka > 17%, Chattogram > 14%, and Rangpur > 13%, while a significant decrease in built-up areas was noticed in Sylhet < −1.45% and Rajshahi < −3.72%. We found that large districts have greater UHIs than small districts. High UHI intensities were observed in Mymensingh > 10 °C, Chattogram > 9 °C, and Barisal > 8 °C compared to other districts due to dense population and unplanned urbanization. We identified higher LST (hotspots) zones in all districts to be increased with the urban expansion and bare land. The suburbanized strategy should prioritize the restraint of the high intensity of UHIs. A heterogeneous increase in UHI intensity over all seven districts was found, which might have potential implications for regional climate change. Our study findings will enable policymakers to reduce UHI and the climate change effect in the concerned districts.
Evaluation of drought is essential and useful to eradicate climate change impact. Therefore, this study aims to explore the spatiotemporal drought intensity trend in seven climatic zones of Bangladesh during 1979-2019. Mann-Kendall trend test and Standardized Precipitation Evapotranspiration Index (SPEI) are employed to identify drought trend and status, whereas spatial visualization is checked through Inverse Distance Weighting Interpolation. The study's findings emphasize the decreasing rate of SPEI in all climatic zones except the south-eastern zone, which is > 0.0065, >0.007, >0.0128, and >-0.0001 for SPEI 09 12, 24, and 06, respectively. Furthermore, the northern region has the highest value in SPEI in some periods with the highest decrease rate in SPEI 06, SPEI 09, SPEI 12 demonstrates greater drought responsibilities. The Barisal (.>-3.75), Rangpur (>-3.65), Dinajpur ((>-3.00), Rajshahi (>-4.35), Bogra (>-4.50), Ishurdi (>-3.45), Faridpur (>-4.30) and Madaripur (>-2.10) found under extreme drought-prone climatic zone. Thus, the study recommends taking initiatives and management for water resources to adopt mitigation planning for drought-prone climatic zones.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.