Antagonistic microorganisms against Rhizoctonia solani were isolated and their antifungal activities were investigated. Two hundred sixteen bacterial isolates were isolated from various soil samples and 19 isolates were found to antagonize the selected plant pathogenic fungi with varying degrees. Among them, isolate C9 was selected as an antagonistic microorganism with potential for use in further studies. Treatment with the selected isolate C9 resulted in significantly reduced incidence of stem-segment colonization by R. solani AG2-2(IV) in Zoysia grass and enhanced growth of grass. Through its biochemical, physiological, and 16S rDNA characteristics, the selected bacterium was identified as Bacillus subtilis subsp. subtilis. Mannitol (1%) and soytone (1%) were found to be the best carbon and nitrogen sources, respectively, for use in antibiotic production. An antibiotic compound, designated as DG4, was separated and purified from ethyl acetate extract of the culture broth of isolate C9. On the basis of spectral data, including proton nuclear magneric resonance (1H NMR), carbon nuclear magneric resonance (13C NMR), and mass analyses, its chemical structure was established as a stereoisomer of acetylbutanediol. Application of the ethyl acetate extract of isolate C9 to several plant pathogens resulted in dose-dependent inhibition. Treatment with the purified compound (an isomer of acetylbuanediol) resulted in significantly inhibited growth of tested pathogens. The cell free culture supernatant of isolate C9 showed a chitinase effect on chitin medium. Results from the present study demonstrated the significant potential of the purified compound from isolate C9 for use as a biocontrol agent as well as a plant growth promoter with the ability to trigger induced systemic resistance of plants.
Streptomyces albidoflavus C247 was isolated from the soil of the Gyeongsan golf course in Korea. Physiological, biochemical and 16S rDNA gene sequence analysis strongly suggested that the isolate belonged to Streptomyces albidoflavus. Preliminary screening revealed that the isolate was active against fungi and bacteria. Self-directing optimization was employed to determine the best combination of parameters such as carbon and nitrogen source, pH and temperature. Nutritional and culture conditions for the production of antibiotics by this organism under shake-flask conditions were also optimized. Maltose (5%) and soytone (5%) were found to be the best carbon and nitrogen sources for the production of antibiotics by S. albidoflavus C247. Additionally, 62.89% mycelial growth inhibition was achieved when the organism was cultured at 30℃ and pH 6.5. Ethyl acetate (EtOAc) was the best extraction solvent for the isolation of the antibiotics, and 100 µg/ml of EtOAc extract was found to inhibit 60.27% of the mycelial growth of Rhizoctonia solani AG2-2(IV) when the poison plate diffusion method was conducted.
Piper betle L. is widely distributed and commonly used medicinally important herb. It can also be used as a medication for type 2 diabetes patients. In this study, compounds of P. betle were screened to investigate the inhibitory action of alpha-amylase and alpha-glucosidase against type 2 diabetes through molecular docking, molecular dynamics simulation, and ADMET (absorption, distribution, metabolism, excretion, and toxicity) analysis. The molecule apigenin-7-O-glucoside showed the highest binding affinity among 123 (one hundred twenty-three) tested compounds. This compound simultaneously bound with the two-target proteins alpha-amylase and alpha-glucosidase, with high molecular mechanics-generalized born surface area (MM/GBSA) values (ΔG Bind = −45.02 kcal mol−1 for alpha-amylase and −38.288 for alpha-glucosidase) compared with control inhibitor acarbose, which had binding affinities of −36.796 kcal mol−1 for alpha-amylase and −29.622 kcal mol−1 for alpha-glucosidase. The apigenin-7-O-glucoside was revealed to be the most stable molecule with the highest binding free energy through molecular dynamics simulation, indicating that it could compete with the inhibitors’ native ligand. Based on ADMET analysis, this phytochemical exhibited a wide range of physicochemical, pharmacokinetic, and drug-like qualities and had no significant side effects, making them prospective drug candidates for type 2 diabetes. Additional in vitro, in vivo, and clinical investigations are needed to determine the precise efficacy of drugs.
An efficient and reproducible procedure was established for direct shoot regeneration of Solanum surattense Bum. using internodal explants. The shoot regeneration efficiency on Murashige and Skoog (MS) medium supplemented with 6benzylaminopurine (BAP) was superior in compared to 6furfurylaminopurine (Kn). The highest mean number of shoots per explant was recorded on MS medium containing 0.5 mgl-1 BAP. BAP alone was more effective for shoot regeneration than combination of BAP and -naphthaleneacetic acid (NAA). The number of shoot per explant was highest in the 4 th subculture and then it was remained stable up to 6 th subculture. The shoot number drastically reduced from 7 th subculture when explants were repeated subculturing up to 8 th subculture. Hundred percent adventitious shoots were rooted successively on half strength MS medium fortified with 0.05 mgl-1 NAA. At about 90% of the in vitro-propagated plantlets survived when they were transferred to ex vitro conditions for acclimatization.
This study was undertaken to evaluate the hypoglycemic and hypolipidemic effect of <i>Momordica charantia</i> (wild and hybrid variety) powder on alloxan induced type 2 diabetic male Long-Evans rats. Oral feeding of the <i>M. charantia</i> powder slightly decreased serum total cholesterol, triglyceride levels and LDL-cholesterol compared with wild, hybrid and standard drug. <i>M. charantia</i> wild variety showed more significant (p < 0.05, 0.01, 0.001) effect on blood glucose level when compared with hybrid variety and standard drug (glibenclamide, 5 mg/kg). At the same time rats’ serum insulin level markedly increased, wild variety showed more significant (p < 0.05, 0.01, 0.001) than glibenclamide control group and hybrid group. But <i>M. charantia</i> did not show any significant effect on HDL-cholesterol and liver glycogen. Thus, results of the study prove that the wild variety of <i>M. charantia</i> fruit have potent antidiabetic and antilipidemic property
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.