Cell stress caused by repression of 54 individual ribosomal genes in Saccharomyces cerevisiae is analyzed. Cell cycle progression and cell morphology responses are specific to the protein whose synthesis is repressed but bud site selection is not. Proteins that generate G2/M and G1 phenotypes map to separate areas of the ribosomal particle.
Three bacterial strains, B5-R-101T, TA-R-1T, and BL-R-1T, were isolated from the feces of a healthy Korean individual. Cells of these strains were Gram-stain-positive, facultatively anaerobic, oxidase-negative, catalase-positive, rod-shaped, and non-motile. They were able to grow within a temperature range of 10–42°C (optimum, 32–37°C), at a pH range of 2.0–10.0 (optimum, pH 5.5–8.0), and at NaCl concentration of 0.5–10.5% (w/v). All the three strains exhibited 2,2-Diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activities ranging from 58 ± 1.62 to 79 ± 1.46% (% inhibition). These strains survived in lower pH (2.0) and in 0.3% bile salt concentration for 4 h. They did not show hemolytic activity and exhibited antimicrobial activity against pathogenic bacteria, such as Escherichia coli, Acinetobacter baumannii, Staphylococcus aureus, and Salmonella enterica. The genomic analysis presented no significant concerns regarding antibiotic resistance or virulence gene content, indicating these strains could be potential probiotic candidates. Phylogenetic analysis showed that they belonged to the genus Corynebacterium, with 98.5–99.0% 16S rRNA gene sequence similarities to other members of the genus. Their major polar lipids were diphosphatidylglycerol and phosphatidylglycerol. The abundant cellular fatty acids were C16:0, C18:1ω9c, and anteiso-C19:0. Genomic analysis of these isolates revealed the presence of genes necessary for their survival and growth in the gut environment, such as multi-subunit ATPases, stress response genes, extracellular polymeric substance biosynthesis genes, and antibacterial genes. Furthermore, the genome of each strain possessed biosynthetic gene clusters with antioxidant and antimicrobial potentials, including terpenes, saccharides, polyketides, post-translationally modified peptides (RIPPs), and non-ribosomal peptides (NRPs). In silico DNA–DNA hybridization (dDDH) and average nucleotide identity (ANI) values were lower than the thresholds to distinguish novel species. Based on phenotypic, genomic, phylogenomic, and phylogenetic analysis, these potential probiotic strains represent novel species within the genus Corynebacterium, for which the names Corynebacterium intestinale sp. nov. (type strain B5-R-101T = CGMCC 1.19408T = KCTC 49761T), Corynebacterium stercoris sp. nov. (type strain TA-R-1T = CGMCC 1.60014T = KCTC 49742T), and Corynebacterium faecium sp. nov. (type strain BL-R-1T = KCTC 49735T = TBRC 17331T) are proposed.
Many mutations in genes for ribosomal proteins and assembly factors cause cell stress and altered cell fate resulting in congenital diseases, collectively called ribosomopathies. Even though all such mutations depress the cell's protein synthesis capacity, they generate many different phenotypes, suggesting that the diseases are not due simply to insufficient protein synthesis capacity. To learn more, we have investigated how the global transcriptome in Saccharomyces cerevisiae responds to reduced protein synthesis generated in two different ways: abolishing the assembly of new ribosomes or inhibiting ribosomal function. Our results show that the mechanism by which protein synthesis is obstructed affects the ribosomal protein transcriptome differentially: ribosomal protein mRNA abundance increases during the abolition of ribosome formation but decreases during the inhibition of ribosome function. Interestingly, the ratio between mRNAs from some, but not all, paralogous genes encoding slightly different versions of a given r-protein change differently during the two types of stress, suggesting that specific ribosomal protein paralogues may contribute to the stress response. Unexpectedly, the abundance of transcripts for ribosome assembly factors and translation factors remains relatively unaffected by the stresses. On the other hand, the state of the translation apparatus does affect cell physiology: mRNA levels for some other proteins not directly related to the translation apparatus also change differentially, though not coordinately with the r-protein genes, in response to the stresses.
Abstract:Ribosome biogenesis is an essential metabolic process of a growing cell. Cells need to continuously synthesize new ribosomes in order to make new proteins than can support building biomass and cell division. It is obvious that in the absence of ribosome biogenesis, cell growth will stop and cell division will stall. However, it is not clear whether cell growth stops due to reduced protein synthesis capacity (translational stress) or due to activation of signaling specific to ribosome biogenesis abnormalities (ribosomal stress). To understand the signaling pathways leading to cell cycle arrest under ribosomal and translational stress conditions, we performed time series RNA-seq experiments of cells at different time of ribosomal and translational stress. We found that expression of ribosomal protein genes follow different course over the time of these two stress types. In addition, ribosomal stress is sensed early in the cell, as early as 2hr. Up-regulation of genes responsive to oxidative stress and over representation of mRNAs for transcription factors responsive to stress was detected in cell at 2hr of ribosomal protein depletion. Even though, we detected phenotypic similarities in terms of cell separation and accumulation in G1 phase cells during inhibition of ribosome formation and ribosome function, different gene expression patterns underlie these phenotypes, indicating a difference in causalities of these phenotypes. Both ribosomal and translational stress show common increased expression of stress responsive gene expression, like Crz1 target gene expression, signature of oxidative stress response and finally membrane or cell wall instability. We speculate that cell membrane and cell wall acts as major stress sensor in the cell and adjust cellular metabolism accordingly. Any change in membrane lipid composition, or membrane protein oxidation, or decrease or increase in intracellular turgor pressure causes stress in cell membrane. Cell membrane or cell wall stress activates and/or inactivates specific signaling pathway which triggers stress responsive gene expression and adaptation of cellular behavior accordingly.peer-reviewed)
Cell fate is susceptable to several internal and external stresses. Stress resulting from mutations in genes for ribosomal proteins or assembly factors leads to many congenital diseases, collectively called ribosomopathies. Even such mutations all depress the cell protein synthesis capacity, they are manifested in many different phenotypes. This prompted us to use Saccharomyces cerevisiae to explore whether reducing the protein synthesis capacity by different mechanisms result in the same or different changes to the global transcriptome. We have compared the transcriptome after abolishing the assembly of new ribosomes and inhibiting the translocation of ribosomes on the mRNA. Our results show that these alternate obstructions generate different mosaics of expression of several classes of genes, including genes for ribosomal proteins, mitotic cell cycle, cell wall synthesis, and protein transport.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.