Mucormycosis is a potentially fatal illness that arises in immunocompromised people due to diabetic ketoacidosis, neutropenia, organ transplantation, and elevated serum levels of accessible iron. The sudden spread of mucormycosis in COVID-19 patients engendered massive concern worldwide. Comorbidities including diabetes, cancer, steroid-based medications, long-term ventilation, and increased ferritin serum concentration in COVID-19 patients trigger favorable fungi growth that in turn effectuate mucormycosis. The necessity of FTR1 gene-encoded ferrous permease for host iron acquisition by fungi has been found in different studies recently. Thus, targeting the transit component could be a potential solution. Unfortunately, no appropriate antifungal vaccine has been constructed as of yet. To date, mucormycosis has been treated with antiviral therapy and surgical treatment only. Thus, in this study, the FTR1 protein has been targeted to design a convenient and novel epitope-based vaccine with the help of immunoinformatics against four different virulent fungal species. Furthermore, the vaccine was constructed using 8 CTL, 2 HTL, and 1 LBL epitopes that were found to be highly antigenic, non-allergenic, non-toxic, and fully conserved among the fungi under consideration. The vaccine has very reassuring stability due to its high pI value of 9.97, conclusive of a basic range. The vaccine was then subjected to molecular docking, molecular dynamics, and immune simulation studies to confirm the biological environment’s safety, efficacy, and stability. The vaccine constructs were found to be safe in addition to being effective. Finally, we used in-silico cloning to develop an effective strategy for vaccine mass production. The designed vaccine will be a potential therapeutic not only to control mucormycosis in COVID-19 patients but also be effective in general mucormycosis events. However, further in vitro, and in vivo testing is needed to confirm the vaccine’s safety and efficacy in controlling fungal infections. If successful, this vaccine could provide a low-cost and effective method of preventing the spread of mucormycosis worldwide.
<div>The world is facing an unprecedented global pandemic caused by the novel SARS-CoV-2. In the absence</div><div>of a specific therapeutic agent to treat COVID-19 patients, the present study aimed to virtually screen out</div><div>the effective drug candidates from the approved main protease protein (MPP) inhibitors and their</div><div>derivatives for the treatment of SARS-CoV-2. Here, drug repurposing and molecular docking were</div><div>employed to screen approved MPP inhibitors and their derivatives. The approved MPP inhibitors against</div><div>HIV and HCV were prioritized, whilst hydroxychloroquine, favipiravir, remdesivir, and alpha-ketoamide</div><div>were studied as control. The target drug surface hotspot was also investigated through the molecular</div><div>docking technique. ADME analysis was conducted to understand the pharmacokinetics and drug-likeness</div><div>of the screened MPP inhibitors. The result of this study revealed that Paritaprevir (-10.9 kcal/mol), and its</div><div>analog (CID 131982844)(-16.3 kcal/mol) showed better binding affinity than the approved MPP inhibitor</div><div>compared in this study including favipiravir, remdesivir, and alpha-ketoamide. A comparative study among</div><div>the screened putative MPP inhibitors revealed that amino acids T25, T26, H41, M49, L141, N142, G143,</div><div>C145, H164, M165, E166, D187, R188, and Q189 are at critical positions for becoming the surface hotspot</div><div>in the MPP of SARS-CoV-2. The study also suggested that paritaprevir and its' analog (CID 131982844),</div><div>may be effective against SARS-CoV-2 as these molecules had the common drug-surface hotspots on the</div><div>main protease protein of SARS-CoV-2. Other pharmacokinetic parameters also indicate that paritaprevir</div><div>and its top analog (CID 131982844) will be either similar or better-repurposed drugs than already approved</div><div>MPP inhibitors. </div><div><br></div>
<div>The world is facing an unprecedented global pandemic caused by the novel SARS-CoV-2. In the absence</div><div>of a specific therapeutic agent to treat COVID-19 patients, the present study aimed to virtually screen out</div><div>the effective drug candidates from the approved main protease protein (MPP) inhibitors and their</div><div>derivatives for the treatment of SARS-CoV-2. Here, drug repurposing and molecular docking were</div><div>employed to screen approved MPP inhibitors and their derivatives. The approved MPP inhibitors against</div><div>HIV and HCV were prioritized, whilst hydroxychloroquine, favipiravir, remdesivir, and alpha-ketoamide</div><div>were studied as control. The target drug surface hotspot was also investigated through the molecular</div><div>docking technique. ADME analysis was conducted to understand the pharmacokinetics and drug-likeness</div><div>of the screened MPP inhibitors. The result of this study revealed that Paritaprevir (-10.9 kcal/mol), and its</div><div>analog (CID 131982844)(-16.3 kcal/mol) showed better binding affinity than the approved MPP inhibitor</div><div>compared in this study including favipiravir, remdesivir, and alpha-ketoamide. A comparative study among</div><div>the screened putative MPP inhibitors revealed that amino acids T25, T26, H41, M49, L141, N142, G143,</div><div>C145, H164, M165, E166, D187, R188, and Q189 are at critical positions for becoming the surface hotspot</div><div>in the MPP of SARS-CoV-2. The study also suggested that paritaprevir and its' analog (CID 131982844),</div><div>may be effective against SARS-CoV-2 as these molecules had the common drug-surface hotspots on the</div><div>main protease protein of SARS-CoV-2. Other pharmacokinetic parameters also indicate that paritaprevir</div><div>and its top analog (CID 131982844) will be either similar or better-repurposed drugs than already approved</div><div>MPP inhibitors. </div><div><br></div>
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.