Designing a functional and efficient blood-clotting agent is a major challenge. In this research, hemostatic scaffolds (GSp) were prepared from the superabsorbent, inter-crosslinked polymer sodium polyacrylate (Sp) bound to a natural protein gelatin (G) loaded with thrombin (Th) by a cost-effective freeze-drying method. Five compositions were grafted (GSp0.0, Gsp0.1, GSp0.2, GSp0.3, GSp0.3-Th) where the concentration of Sp varied but the ratios of G remained the same. The fundamental physical characteristics that increased the amounts of Sp with G gave synergistic effects after interacting with thrombin. Due to the presence of superabsorbent polymer (SAP) swelling capacities in GSp0.3 and GSp0.3-Th surge forward 6265% and 6948%, respectively. Pore sizes became uniform and larger (ranging ≤ 300 μm) and well-interconnected. The water-contact angle declined in GSp0.3 and GSp0.3-Th to 75.73 ± 1.097 and 75.33 ± 0.8342 degrees, respectively, thus increasing hydrophilicity. The pH difference was found to be insignificant as well. In addition, an evaluation of the scaffold in in vitro biocompatibility with the L929 cell line showed cell viability >80%, so the samples were nontoxic and produced a favorable environment for cell proliferation. The composite GSp0.3-Th revealed the lowest HR (%) (2.601%), and the in vivo blood-clotting time (s) and blood loss (gm) supported hemostasis. Overall, the results showed that a novel GSp0.3-Th scaffold can be a potential candidate as a hemostatic agent.
Vasospasm during reconstructive microsurgery is a common, uncertain, and devastating phenomena concerning flap survival. Topical vasodilators as antispasmodic agents are widely used to reduce vasospasm and enhance microvascular anastomosis in reconstructive microsurgery. In this study, thermo-responsive hydrogel (CNH) was fabricated by grafting chitosan (CS) and hyaluronic acid (HA) to poly(N-isopropylacrylamide) (PNIPAM). Papaverine, an anti-spasmodic agent, was then loaded to evaluate its effect on rat skin flap survival. Post-operative flap survival area and water content of rat dorsal skin flap were measured at 7 days after intradermal application of control hydrogel (CNHP0.0) and papaverine loaded hydrogel (CNHP0.4). Tissue malondialdehyde (MDA) content and superoxide dismutase (SOD) activity was measured using enzyme linked immunosorbent assay (ELISA) to determine oxidative stress in flaps. Hematoxylin and eosin (H&E) staining and immunohistochemistry (IHC) were performed to evaluate flap angiogenesis and inflammatory markers. Results showed that CNHP0.4 hydrogel could reduce tissue edema (35.63 ± 4.01%), improve flap survival area (76.30 ± 5.39%), increase SOD activity and decrease MDA content. Consequently, it also increased mean vessel density, upregulated expression of CD34 and VEGF, decreased macrophage infiltration, and reduced CD68 and CCR7 expression based on IHC staining. Overall, these results indicate that CNHP0.4 hydrogel can enhance angiogenesis with anti-oxidative and anti-inflammatory effects and promote skin flap survival by preventing vascular spasm.
Graphical Abstract
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.